Test di Matematica di Base Corsi di Laurea in Ingegneria 17/5/2016 - C

ma	atricola	cognome	nome	corso di laurea	
1.	L'espression	e sen (3α) vale identicamente	e		
	C. $2 \sin \alpha$ C. $3 \sin \alpha$ C.	$-4 \operatorname{sen}^{3} \alpha$ $\cos \alpha + \operatorname{sen} \alpha$ $\cos^{2} \alpha - \operatorname{sen}^{3} \alpha$ $\cos^{2} \alpha + \operatorname{sen}^{3} \alpha$			
2.	Il polinomio	$x^4 - 3x^3 + 3x^2 - 3x + 2$	è divisibile per		
	A. $x^2 - 4$ B. $x^2 - 1$ C. x^2 D. $x^2 + 1$ E. $x^2 + 4$		•		
3.	La coppia di rette per l'origine e tangenti alla circonferenza $x^2 + y^2 - 10x + 16 = 0$ ha equazione				
	A. $xy = 0$ B. $x^2 - y^2$ C. $9x^2 + 1$ D. $16x^2 - 1$ E. $9x^2 - 1$	$6y^2 = 0$ $9y^2 = 0$			
4.	Due corde AB e CD di una circonferenza si intersecano in un punto P . Sia $A\hat{C}B=\alpha$. L'ampiezza dell'angolo somma $A\hat{C}B+A\hat{D}B$ vale				
		e dal raggio della circonferen e dall'angolo formato dalle d			
5.	Scegliere l'in	nsieme A affinché, al variare	di $k \in A$, l'equazione		
		$k^2x^2 + (3-2k)$	$y^2 + (3-k)x + 6y + 2 = 0$		
	non rappresenti mai una circonferenza				
	A. $A = \{1, B.$ $A = \{0, C.$ $A = \{-1, A\}$	$\{0, -3, 2\}$ $\{0, -3, 4\}$			

6.	Quale delle seguenti equazioni rappresenta un'iperbole che ammette come asintoto la retta di equazione $y=2x$?
	A. $x^2 - \frac{y^2}{2} = 1$
	B. $x^2 + \frac{y^2}{2} = 1$
	C. $\frac{x^2}{4} - \frac{y^2}{2} = 1$
	$\begin{array}{ccc} 4 & 2 \\ D. & x^2 - \frac{y^2}{4} = 1 \end{array}$
	E. $x^2 + \frac{y^2}{4} = 1$
Ш	E. $x + \frac{1}{4} = 1$
7.	Sono date la retta r e la parabola $\mathcal P$ di equazione rispettivamente
	$6x + 3y - 4 = 0$ e $y = -3x^2 + 2x$.
	Possiamo affermare che
	A. non si intersecano B. r passa per il vertice di \mathcal{P}
	C. r passa per il fuoco di \mathcal{P}
	D. r è l'asse di simmetria di \mathcal{P} E. r e \mathcal{P} sono tangenti nel punto $\left(\frac{2}{3},0\right)$
	(3,)
8.	Per quali $x \in \mathbf{R}$ è verificata la disequazione $\sqrt{x^2 - 1} > 2x$?
	A. $x \geqslant -1$ B. $x \leqslant -1$
	C. $-1 < x < 1$
	D. per nessun $x \in \mathbf{R}$ E. $x \ge 1$
9.	Le soluzioni della disequazione $\frac{\sqrt{x+2}}{ x+1 } \geqslant \sqrt{2}$ sono i numeri $x \in \mathbf{R}$ che soddisfano la condizione
	A. $-\frac{3}{2} \leqslant x \leqslant 0 \land x \neq -1$
	B. $-2 \leqslant x \leqslant -\frac{3}{2} \lor x \geqslant 0$
	C. $x \neq -1$
	D. $x \ge -2 \land x \ne -1$ E. $x \le 0 \land x \ne -1$
10.	Quali sono tutti i numeri reali α per i quali esistono due numeri reali x e y il cui prodotto vale 1 e la somma α ?
	A. $\alpha = -1 \lor \alpha = 1$
	B. $\alpha = -2 \lor \alpha = 2$ C. $\alpha < -1 \lor \alpha > 1$
	D. $\alpha \leqslant -2 \lor \alpha \geqslant 2$
Ш	E. $\alpha < -2 \lor \alpha > 2$

11.	Esternamente ad un triangolo equilatero ABC di lato $2a$ si costruiscano sui tre lati i tre quadrati di lato $2a$ e siano D , E ed F i loro centri. La lunghezza del lato del triangolo equilatero DEF vale	
	A. $a(1+\sqrt{3})$ B. $2a$ C. $2a\sqrt{3}$	
	D. $a(1+\sqrt{2})$ E. $2a\sqrt{2}$	
12.	La squadra di operai della ditta Antilope è in grado di costruire un muro in 2 ore, mentr quelli del team Bradipo impiegano, per lo stesso lavoro, 6 ore. Se le due squadre si fondon nella ditta Bradilope e si mettono a lavorare insieme quanto tempo impiegheranno a costruir il muro?	
	A. 8 ore	
	B. 4 oreC. 90 minuti	
	D. 60 minuti	
Ш	E. 40 minuti	
13.	Nell'intervallo $[0,2\pi]$ le soluzioni dell'equazione $\frac{\sin(3x)}{\sin x} = 1 - 2\sin^2 x$ sono	
	A. $x = 0, \pi, 2\pi$	
	B. $x = 0, \pi/2, \pi$	
	C. $x = \pi/4, \pi/2$ D. $x = \pi, 3\pi/2$	
	E. $x = \pi/2, 3\pi/2$	
14.	Sia n un numero intero diverso da 0 e da $-1,\ a=\frac{1}{n}$ e $b=\frac{1}{n+1}$. Quale delle seguenti affermazioni è corretta?	
	A. $a < b$	
	 B. a > b C. esiste sempre un numero intero compreso tra a e b 	
	 C. esiste sempre un numero intero compreso tra a e b D. ci sono infiniti numeri razionali tra a e b 	
	E. esiste al più un numero razionale tra $a \in b$	
15.	Un trapezio rettangolo $ABCD$ di base maggiore AB ha il lato obliquo BC congruente alla base minore CD . Sapendo che $C\hat{B}D=\alpha$, l'ampiezza dell'angolo $A\hat{D}B$ vale	
	A. α B. 2α	
	B. 2α C. $\pi - \alpha$	
	D. $\pi/2 - \alpha$	
	E. dipende dalla lunghezza di CD	

16.	Nell'intervallo $[0,2\pi]$ le soluzioni della disequazione — $\sin x + \cos 2x < 0$ — sono i numeri reali x che soddisfano la condizione				
	A. $0 < x < 7\pi/6 \lor 11\pi/6 < x < 2\pi$ B. $7\pi/6 < x < 11\pi/6$ C. $0 < x < 4\pi/3 \lor 5\pi/3 < x < 2\pi$ D. $4\pi/3 < x < 5\pi/3$ E. $4\pi/3 < x < 11\pi/6$				
17.	Il vertice della parabola $y = \left(\frac{k^2}{2} + 1\right)x^2 + (2k-1)x + \frac{1}{4}$				
	appartiene all'asse x per A. ogni $k > 0$ B. $k = -7/8$ C. $k = 7/8$ D. $k = -8/7$ E. $k = 8/7$				
18.	L'equazione $x(a+a^2-x)=a^3$, essendo $x\in \mathbf{R}$ l'incognita e $a\in \mathbf{R}$ un parametro, ammette A. tre soluzioni distinte se $a\neq 1$ B. una soluzione doppia se $a=a^2$ C. al più una soluzione per ogni $a\in \mathbf{R}$ D. due soluzioni distinte se $a\neq 1$ E. una soluzione doppia se $a=-1$				
19.	Il triangolo che ha due lati di misura 4 e $\sqrt{41}$ rispettivamente e il coseno dell'angolo tra essi compreso che vale $4/\sqrt{41}$ è A. isoscele e acutangolo B. isoscele e rettangolo C. scaleno e rettangolo D. scaleno e ottusangolo E. scaleno e acutangolo				
20.	Il volume di un cubo inscritto in una semisfera di raggio r vale				
	A. $\frac{2\sqrt{6}}{9}r^3$ B. $\frac{\sqrt{3}}{2}r^3$				
	C. $\frac{\sqrt{27}}{8}r^3$				
	D. $\frac{\sqrt{6}}{3}r^3$ E. $\frac{3\sqrt{6}}{2}r^3$				