Test di Matematica di Base Corsi di Laurea in Ingegneria 28/8/2015 - A

1. La disequazione $x^2 \le 2\sqrt{5}$ \square A. ha infinite soluzioni in \mathbb{Z} e in \mathbb{Q} \square B. ha cinque soluzioni in \mathbb{Z} e in \mathbb{Q} \square C. ha quattro soluzioni in \mathbb{Z} e infinite in \mathbb{Q} \square D. nessuna soluzione \mathbb{Z} e infinite in \mathbb{Q} \square D. nessuna soluzione \mathbb{Z} e infinite in \mathbb{Q} 2. Siano r, s, t le rette di equazione $y = x, y = x/2$ e $x = k$ con $k > 0$ e siano A e B rispettivamente le intersezioni di r e s con t . Allora l'area del triangolo di vertici l'origine O degli assi e i punti A e B vale $1/9$ solo se \square A. $k = \frac{3}{2}$ \square B. $k = \frac{2}{3}$ \square C. $k = \frac{\sqrt{2}}{3}$ \square D. $k = \frac{1}{3}$ \square E. $k = \frac{4}{9}$ 3. Siano $a,b,c \in \mathbb{R}$ tali che $a < b < a < c $. Allora è sempre vero che \square A. $c < 0$ \square B. $a < 0$ e $c < 0$ \square C. $a < 0$ \square D. $a < 0$ e $b < 0$ \square E. $b < 0$ 4. \square polinomio $p(x) = x^3 - (1 + 2k)x^2 + (2k + k^2)x - k^2$ $con k \in R$ ammette solo la radice multipla $x = 1$ \square A. se $k = 0$ \square B. per ogni valore di k \square C. se $k = 1$ \square D. mai \square E. se $k \neq -1$	ma	tricola	cognome	nome		corso di laurea	
□ A. ha infinite soluzioni in \mathbb{Z} e in \mathbb{Q} □ B. ha cinque soluzioni in \mathbb{Z} e infinite in \mathbb{Q} □ C. ha quattro soluzioni in \mathbb{Z} e infinite in \mathbb{Q} □ D. nessuna soluzione \mathbb{Z} e infinite in \mathbb{Q} □ D. nessuna soluzione \mathbb{Z} e infinite in \mathbb{Q} □ C. Siano r, s, t le rette di equazione $y = x, y = x/2$ c $x = k$ con $k > 0$ e siano A e B rispettivamente le intersezioni di r e s con t . Allora l'area del triangolo di vertici l'origine O degli assi e i punti A e B vale $1/9$ solo se □ A. $k = \frac{3}{2}$ □ B. $k = \frac{2}{3}$ □ C. $k = \frac{\sqrt{2}}{3}$ □ D. $k = \frac{1}{3}$ □ E. $k = \frac{4}{9}$ 3. Siano $a,b,c \in \mathbb{R}$ tali che $a < b < a < c $. Allora è sempre vero che □ A. $c < 0$ □ B. $a < 0$ e $c < 0$ □ C. $a < 0$ □ D. $a < 0$ e $b < 0$ □ E. $b < 0$ 4. Il polinomio $p(x) = x^3 - (1 + 2k)x^2 + (2k + k^2)x - k^2$ con $k \in R$ ammette solo la radice multipla $x = 1$ □ A. se $k = 0$ □ B. per ogni valore di k □ C. se $k = 1$ □ D. mai							
le intersezioni di r e s con t . Allora l'area del triangolo di vertici l'origine O degli assi e i punti A e B vale $1/9$ solo se $ \Box A. k = \frac{3}{2} $ $ \Box B. k = \frac{2}{3} $ $ \Box D. k = \frac{1}{3} $ $ \Box E. k = \frac{4}{9} $ 3. Siano $a,b,c \in \mathbb{R}$ tali che $a < b < a < c $. Allora è sempre vero che $ \Box A. c < 0 $ $ \Box B. a < 0 e c < 0 $ $ \Box C. a < 0 $ $ \Box D. a < 0 e b < 0 $ $ \Box E. b < 0 $ 4. Il polinomio $p(x) = x^3 - (1 + 2k)x^2 + (2k + k^2)x - k^2$ $con k \in R$ ammette solo la radice multipla $x = 1$ $ \Box A. se k = 0 $ $ \Box B. per ogni valore di k \Box C. se k = 1 \Box D. mai$	1.	A. ha infinB. ha cinqC. ha quatD. nessuna	ite soluzioni in \mathbb{Z} ue soluzioni in \mathbb{Z} etro soluzioni in \mathbb{Z} a soluzione \mathbb{Z} e infi	e infinite in \mathbb{Q} e infinite in \mathbb{Q} nite in \mathbb{R}			
	2.	le intersezio	ni di $r \in s \text{ con } t$.				
		A. $k = \frac{3}{2}$					
		B. $k = \frac{2}{3}$					
3. Siano $a,b,c \in \mathbb{R}$ tali che $a < b < a < c $. Allora è sempre vero che A. $c < 0$ B. $a < 0$ e $c < 0$ C. $a < 0$ D. $a < 0$ e $b < 0$ E. $b < 0$ 4. Il polinomio $p(x) = x^3 - (1 + 2k)x^2 + (2k + k^2)x - k^2$ $con k \in R \text{ ammette solo la radice multipla } x = 1$ A. se $k = 0$ B. per ogni valore di k C. se $k = 1$ D. mai		C. $k = \frac{\sqrt{2}}{3}$					
3. Siano $a,b,c \in \mathbb{R}$ tali che $a < b < a < c $. Allora è sempre vero che A. $c < 0$ B. $a < 0$ e $c < 0$ C. $a < 0$ D. $a < 0$ e $b < 0$ E. $b < 0$ 4. Il polinomio $p(x) = x^3 - (1 + 2k)x^2 + (2k + k^2)x - k^2$ $con k \in R \text{ ammette solo la radice multipla } x = 1$ A. se $k = 0$ B. per ogni valore di k C. se $k = 1$ D. mai		D. $k = \frac{1}{3}$					
		$E. k = \frac{3}{9}$					
	3.	Siano $a,b,c \in$	\mathbb{R} tali che $a < b$	< a < c . Allora	è sempre vero che		
			2 < 0				
			<i>c</i> < 0				
4. Il polinomio $p(x) = x^3 - (1+2k)x^2 + (2k+k^2)x - k^2$ con $k \in R$ ammette solo la radice multipla $x = 1$ $\square A. \text{se } k = 0$ $\square B. \text{per ogni valore di } k$ $\square C. \text{se } k = 1$ $\square D. \text{mai}$			b < 0				
$p(x) = x^3 - (1+2k)x^2 + (2k+k^2)x - k^2$ con $k \in R$ ammette solo la radice multipla $x = 1$ $\square A. \text{se } k = 0$ $\square B. \text{per ogni valore di } k$ $\square C. \text{se } k = 1$ $\square D. \text{mai}$	Ш	E. b < 0					
☐ A. se $k = 0$ ☐ B. per ogni valore di k ☐ C. se $k = 1$ ☐ D. mai	4.	Il polinomio	p(x)	$= x^3 - (1+2k)x^2$	$+(2k+k^2)x-k^2$		
□ B. per ogni valore di k □ C. se $k = 1$ □ D. mai		con $k \in R$ ammette solo la radice multipla $x=1$					
\square C. se $k = 1$ \square D. mai							
D. mai		1 0					
			L				
			-1				

5.	Dividendo a metà un quadrato lungo la sua diagonale, si ottiene un triangolo che ha il perimetro lungo $2\sqrt{2}(\sqrt{2}+1)$. Allora l'area del quadrato vale					
	A. 2					
	B. 4 C. $2\sqrt{2}$					
	D. 1					
	E. $4\sqrt{2}$					
	Due recipienti cilindrici di raggi rispettivamente $5\mathrm{c}m$ e $10\mathrm{c}m$ contengono esattamente un litro d'acqua. Allora il rapporto tra l'altezza di uno e l'altezza dell'altro è A. 2 B. 3 C. 4 D. 5 E. 6					
7.	Con quale delle seguenti l'espressione $2\sin(14x)\cos(6x)$ coincide per ogni $x \in \mathbb{R}$?					
	A. $\sin(20x) + \sin(8x)$					
	$B. \sin(20x) - \sin(8x)$					
	C. $\cos(20x) + \cos(8x)$ D. $\cos(20x) - \cos(8x)$					
	E. $\sin(20x) + \cos(8x)$					
	,					
8.	,					
8.	$\begin{cases} \cos 2x > 0\\ 2\sin x - 1 > 0 \end{cases}$					
	$\begin{cases} \cos 2x > 0 \\ 2\sin x - 1 > 0 \end{cases}$ in $[0,2\pi]$ so no					
	$\begin{cases} \cos 2x > 0 \\ 2\sin x - 1 > 0 \end{cases}$ in $[0,2\pi]$ so no A. $0 < x < \frac{\pi}{6}$					
	$\begin{cases} \cos 2x>0\\ 2\sin x-1>0 \end{cases}$ in $[0,2\pi]$ so no A. $0< x<\frac{\pi}{6}$ B. $\frac{\pi}{6}< x<\frac{5\pi}{6}$					
	$\begin{cases} \cos 2x > 0 \\ 2\sin x - 1 > 0 \end{cases}$ in $[0,2\pi]$ so no A. $0 < x < \frac{\pi}{6}$ B. $\frac{\pi}{6} < x < \frac{5\pi}{6}$ C. $\frac{\pi}{6} < x < \frac{\pi}{4}$					
	$\begin{cases} \cos 2x > 0 \\ 2\sin x - 1 > 0 \end{cases}$ in $[0,2\pi]$ sono $A. 0 < x < \frac{\pi}{6}$ $B. \frac{\pi}{6} < x < \frac{5\pi}{6}$ $C. \frac{\pi}{6} < x < \frac{\pi}{4}$ $D. \frac{\pi}{4} < x < \frac{5\pi}{6}$					
	$\begin{cases} \cos 2x > 0 \\ 2\sin x - 1 > 0 \end{cases}$ in $[0,2\pi]$ so no A. $0 < x < \frac{\pi}{6}$ B. $\frac{\pi}{6} < x < \frac{5\pi}{6}$ C. $\frac{\pi}{6} < x < \frac{\pi}{4}$					
	$\begin{cases} \cos 2x > 0 \\ 2\sin x - 1 > 0 \end{cases}$ in $[0,2\pi]$ sono $A. 0 < x < \frac{\pi}{6}$ $B. \frac{\pi}{6} < x < \frac{5\pi}{6}$ $C. \frac{\pi}{6} < x < \frac{\pi}{4}$ $D. \frac{\pi}{4} < x < \frac{5\pi}{6}$					
	$\begin{cases} \cos 2x > 0 \\ 2\sin x - 1 > 0 \end{cases}$ in $[0,2\pi]$ so no A. $0 < x < \frac{\pi}{6}$ B. $\frac{\pi}{6} < x < \frac{5\pi}{6}$ C. $\frac{\pi}{6} < x < \frac{\pi}{4}$ D. $\frac{\pi}{4} < x < \frac{5\pi}{6}$ E. $0 < x < \frac{\pi}{4}$ Un allevatore di coccodrilli ha a disposizione 200 m di staccionata per formare 3 lati di un'area rettangolare lasciando aperto il quarto lato dalla parte del fiume. Di quanti metri deve essere il lato minore affinché l'area sia massima? A. 40 m					
	$\begin{cases} \cos 2x > 0 \\ 2\sin x - 1 > 0 \end{cases}$ in $[0,2\pi]$ so no A. $0 < x < \frac{\pi}{6}$ B. $\frac{\pi}{6} < x < \frac{5\pi}{6}$ C. $\frac{\pi}{6} < x < \frac{\pi}{4}$ D. $\frac{\pi}{4} < x < \frac{5\pi}{6}$ E. $0 < x < \frac{\pi}{4}$ Un allevatore di coccodrilli ha a disposizione 200 m di staccionata per formare 3 lati di un'area rettangolare lasciando aperto il quarto lato dalla parte del fiume. Di quanti metri deve essere il lato minore affinché l'area sia massima? A. 40 m B. 50 m					
9.	$\begin{cases} \cos 2x > 0 \\ 2\sin x - 1 > 0 \end{cases}$ in $[0,2\pi]$ so no A. $0 < x < \frac{\pi}{6}$ B. $\frac{\pi}{6} < x < \frac{5\pi}{6}$ C. $\frac{\pi}{6} < x < \frac{\pi}{4}$ D. $\frac{\pi}{4} < x < \frac{5\pi}{6}$ E. $0 < x < \frac{\pi}{4}$ Un allevatore di coccodrilli ha a disposizione 200 m di staccionata per formare 3 lati di un'area rettangolare lasciando aperto il quarto lato dalla parte del fiume. Di quanti metri deve essere il lato minore affinché l'area sia massima? A. 40 m					

In quale dei seguenti intervalli la disequazione (5x+6)/(x+6) < 4 non è soddisfatta per nessun $x \in \mathbb{R}$? \Box A.] -8, -6] \Box B.] -4,2[\Box C.] - 12,18] \square D. $]-\infty,4[$ \Box E. [0,1] Si consideri un triangolo rettangolo i cui cateti misurano rispettivamente a e 2a. Determinare l'area della regione di piano compresa tra il triangolo e la semicirconferenza ad esso circoscritta. \Box A. $(5\pi - 1)a^2$ $\square \text{ B. } \frac{\sqrt{5}}{2}a^{2}$ $\square \text{ C. } \left(\frac{5}{4}\pi - 1\right)a^{2}$ $\square \text{ D. } \left(\frac{5}{8}\pi - 1\right)a^{2}$ $\square \text{ E. } \left(\frac{\pi}{2} - 1\right)a^{2}$ La somma, la differenza e il prodotto di due numeri reali positivi e non nulli sono in rapporto 9:7:72. Qual è il valore del più piccolo di essi? ☐ A. 9 □ B. 8 □ C. 7 ☐ D. 12 □ E. 6 13. L'equazione $\sqrt{6} x^2 - 2x - \sqrt{3} x + \sqrt{2} = 0$ ha come soluzioni \Box B. $x = -\frac{\sqrt{2}}{2} e x = -\sqrt{2}$ $\square \quad C. \quad x = \frac{\sqrt{2}}{2}$ \Box D. $x = -\frac{\sqrt{2}}{2} e x = -\frac{\sqrt{6}}{3}$ \square E. $x = \sqrt{\frac{1}{2}} e x = \sqrt{\frac{2}{3}}$ Determinare l'equazione dell'iperbole che ammette come asintoti gli assi cartesiani e che stacca sulla retta x + 2y = 5 un segmento di lunghezza $3\sqrt{5}/2$. \square A. xy = 1 \square B. xy = 2 \square C. xy = 3 \square D. xy = 9/8 \Box E. xy = 155/64

15.		Da quale punto dell'asse y deve passare la retta r tangente alla parabola $y = x^2$ in modo tale che r e la sua simmetrica rispetto all'asse y siano ortogonali?					
П		(0,-1)					
_		(0, -1/2)					
		(0, -1/4)					
		(0,-6/5)					
		(0, -8/5)					
	. Data la circonferenza di centro l'origine O e raggio 2, si traccino le rette passanti per il p $A=(-4,0)$ e tangenti alla circonferenza in B e C , dove B si trova nel terzo quadrante. Si D di ascissa negativa ed E di ascissa positiva i punti di intersezione della circonferenza l'asse x . Allora EB ha lunghezza						
	A.	$\frac{2}{\sqrt{3}}$					
	В.						
	С.	3					
		$2\sqrt{3}$					
	\odot E. $3\sqrt{2}$						
17.	Quale dei seguenti numeri soddisfa l'equazione						
		$\operatorname{sen} x - \cos x = \sqrt{2}, 0 < x < 2\pi?$					
		$\pi/3$					
		$\pi/4$					
	C.	$\frac{2\pi/3}{3\pi/4}$					
	D. Е.	$5\pi/4$					
18.		n certo insieme di numeri interi positivi non contiene numeri dispari. Allora					
	Α.						
	B. non contiene numeri divisibili per 11						
	С.	non contiene numeri divisibili per 3 e per 7					
	D. E.	non contiene potenze di numeri dispari non contiene quadrati perfetti					
19.		o il polinomio					
		$P(x) = x^2 + (2k-1)x + 3 - 5k,$					
	per	quali valori di $k \in \mathbb{R}$ la somma delle radici è uguale al loro prodotto?					
		k = 7/4					
	В.	$k = \frac{-7 \pm \sqrt{137}}{8}$					
	С.	$k = \frac{-7 \pm \sqrt{137}}{4}$					
		k = 1					
		k = 2/3					
20.		Quale delle seguenti relazioni è vera?					
		$\frac{1}{\sqrt[3]{a^2}} > \sqrt{\sqrt[15]{a^{23}}} \operatorname{con} a > 1$					
		$\frac{\sqrt[8]{3^7} \cdot \sqrt[4]{3^5}}{\sqrt{3^3}} > \frac{3\sqrt{3\sqrt{3}}}{\sqrt{3^{5/4}}}$					
	С.	$ \sqrt{7} - \sqrt{5} = \sqrt{5} - \sqrt{3} (\sqrt{2})^{\sqrt{3}} < (\sqrt{3})^{\sqrt{2}} $					
Ш	E.	$2^{\sqrt{3}} > 3^{\sqrt{2}}$					