Test di Matematica di Base Corso di Laurea in Scienze dell'Architettura 9/10/2015 - A

ma	ttrice	ola	cognome		nome		
	(-2 A. B. C. D.	(5) sono $C = (0, C) = (1, C) = (1, C) = (1, C) = (1, C)$	e il raggio R 0) e $R = 6$ 0) e $R = 5$ - 1) e $R = 7$ 1) e $R = 5$ 1) e $R = 4$		enza circoscritta a	al triangolo	di vertici (1,6), (5,4) e
2.	Il nu	umero $\frac{5^6}{}$	$\frac{5^{2}-2\cdot 5^{60}+1}{5^{29}(5^{31}-5^{29})}$	$\frac{5^{58}}{)}$ vale			
	A. B. C. D. E.	21 22 23 24 25					
3.	e il	perimetr	o del trapezi		apendo che la dia		doppia dell'altezza <i>AD</i> è bisettrice dell'angolo
	A. B. C. D. E.	3 4 5 dipende	e dalla lunghe e dall'ampiezz	zza di CB			
4.				el piano che ver	ificano l'equazion	$e \frac{y}{x^2 + 1} =$	0 è
	A.B.C.D.	una par un'iperl una circ una ret	coole conferenza di	raggio 1			
Ш	E.	una sen	niretta				

5.	Sem	Semplificando la frazione algebrica $\frac{2x^4 - x^2 - 1}{x^4 - 1}$ si ottiene						
	A.B.C.D.E.	$\frac{(2x+1)^2}{x^2-1}$ $\frac{2x^2+1}{x^2+1}$ $\frac{(2x-1)^2}{x^2+1}$ $\frac{x^2+2}{x^2+1}$ $\frac{2x^2-1}{x^2-1}$						
6. 	Per A. B. C. D. E.	quanti valori di $n\in\mathbb{N}$, con $n\geqslant 1$, la disequazione $n^2<2n+15$ è verificata? per nessun n per quattro valori di n per cinque valori di n per nove valori di n per nove valori di n per infiniti n						
	di a A.	o il parallelogramma di $ABCD$, di base AB , si considerino i due triangoli ABC e ADB , rea rispettivamente pari a x e y . Possiamo affermare che $x < y$ $x > y$ $x = y$ $x \neq y$ la relazione tra x e y dipende dagli angoli del parallelogramma						
8.	-	ente sono le circonferenze tangenti ad entrambe le rette $y=x$ e $y=-x$ e passanti per il to $(2,1)$? una due quattro otto						

☐ E. infinite