Allegato **B2 A.A. 2024-25 Quadro degli obiettivi formativi specifici e delle propedeuticità**

Quadro degli obiettivi formativi specifici e delle propedeuticità Corso di Laurea Magistrale in Industrial Engineering for Sustainable Manufacturing - INTERCLASSE LM 31/LM-33

DM 270/2004, art. 12, comma 2, lettera b

N.	Insegnamento/Course	Settore SSD	Obiettivi formativi specifici/	Propedeuticità
			Specific	obbligatorie/
			Educational Objectives	Mandatory
				prerequisites
1	Mechatronic Systems	ING IND 13	Study and design of mechatronic	prerequisites
1	Weenatronic Systems		systems employed in the industrial	
			environment: kinematic, static and	
			dynamic modelling of mechanical	
			-	
			systems, mechanical structure and	
1			components, sensors, actuators,	
			data acquisition and control.	
			Implementation of digital twins of	
			mechatronic systems and data	
1			acquisition on real mechatronic	
			systems (laboratory).	
2	Robotics	ING IND 13	Industrial robots, collaborative	
			robots (cobots) and mobile robots:	
			typologies, modelling and control.	
			Applications of robots, cobots and	
			mobile robots in the industrial	
			environment, with a focus on	
			energy saving and sustainability.	
			Implementation of trajectory	
			planning projects in a simulated	
			environment and on real robots,	
			cobots and mobile robots	
			(laboratory).	
3	Sustainable	ING IND 16	Conceptual basis and	
	Manufacturing		environmental analysis of	
	C C		production processes: metal	
			casting, forming and shaping,	
			assembly and joining, machining,	
			finishing, electro-chemical	
			processes. Guidelines for the	
			performance analysis of a	
			manufacturing system.	
			Technologies enabling green	
			manufacturing. Demanufacturing	
I			systems. Numerical examples and	
			laboratory demonstrations.	
			Analysis and evaluation of	
			industrial application cases.	

			the state of the state	1
4	Smart Manufacturing	ING IND 16	Innovation of manufacturing	
	and Process		processes based on Industry 4.0	
	Digitalization		principles: Computer-Integrated	
			Manufacturing, Digital Information	
			Technology, networked sensors	
			for data collection and cyber-	
			security, intelligent industrial	
			automation, Multi-scale dynamic	
			modelling and simulation of	
			productive processes, application	
			of machine learning and digital	
			twins in production, advanced	
			industrial robotic applications.	
			Numerical examples and	
			laboratory demonstrations.	
			Analysis and evaluation of	
			industrial application cases	
5	Green Machine Design	ING IND 14	The module introduces the	
			fundamentals of solid mechanics	
			and concepts of machine design	
			with particular attention to	
			sustainability matters. More in	
			detail, the topics of the module	
			are: the theory of elasticity; the	
			elementary beam theory; the	
			mechanics of notches and fatigue;	
			Design for sustainability: optimal	
			structural design & material	
			selection; Examples of durability	
			analysis of mechanical components	
			(Lab. Activity).	
6	Digital Modelling for	ING IND 14	The module provides the future	
	Structural Analysis and		engineer with a solid background	
	Design		regarding numerical approaches	
			for structural analysis of	
			mechanical components and	
			structures, with a focus on the	
			minimisation of primary resources.	
			The key contents of the course are:	
			Fundamentals of structure matrix	
			analysis; Finite element method	
			(FEM); Topology optimisation for	
			green design; Practical use of	
			numerical techniques. Examples	
			of virtual prototyping for durability	
			analysis of machine elements with	
			commercial computer codes (Lab.	
			Activity).	
7	Cleaner Production	ING IND 17	Lectures take up environmental	
	Systems		issues of industrial production	
	-		systems and train students in	
			systems thinking and life cycle	
			thinking approaches for the	
			0 100	

assessment and optimization of resource efficiency in industrial pr10ocesses. The course draws on real life case studies from carbon intensive industries such as metalworking and steelmaking, pulp&paper, construction materials, and the food industry. More in detail, the topics include: - Definition and calculation of resource efficiency indicators for production systems (energy
pr10ocesses. The course draws on real life case studies from carbon intensive industries such as metalworking and steelmaking, pulp&paper, construction materials, and the food industry. More in detail, the topics include: - Definition and calculation of resource efficiency indicators
real life case studies from carbon intensive industries such as metalworking and steelmaking, pulp&paper, construction materials, and the food industry. More in detail, the topics include: - Definition and calculation of resource efficiency indicators
intensive industries such as metalworking and steelmaking, pulp&paper, construction materials, and the food industry. More in detail, the topics include: - Definition and calculation of resource efficiency indicators
metalworking and steelmaking, pulp&paper, construction materials, and the food industry. More in detail, the topics include: - Definition and calculation of resource efficiency indicators
pulp&paper, construction materials, and the food industry. More in detail, the topics include: - Definition and calculation of resource efficiency indicators
materials, and the food industry. More in detail, the topics include: - Definition and calculation of resource efficiency indicators
More in detail, the topics include: - Definition and calculation of resource efficiency indicators
- Definition and calculation of resource efficiency indicators
of resource efficiency indicators
for production systems (energy
footprint, blue water footprint,
carbon footprint, material
footprint e land footprint);
- Characterization of
hotspots of carbon emissions (e.g.
furnaces, process heating and
cooling systems, as well as internal
and external logistics systems);
- Technology options for the
transition to low carbon, circular
industrial systems: use of
renewable energy sources, energy
recovery, industrial symbiosis,
revamping and life extension.
8 Circular Economy ING IND 35 Linear economy and circular
economy: definitions and
principles. Growth and
sustainability. Biological cycle,
energy flows and industrial
ecology. Economic theory and
environmental issues. Policies and
strategies in a circular economy
perspective. Value creation
through reducing, reusing and
recycling. Agenda 2030.
9 Project Management ING IND 35 Project target and scope. Selecting,
planning and managing a project.
Time and cost management.
Project risk management. Project
control and quality management.
Stakeholder management. Project
management methodologies,
techniques, and tools. Project
certifications.
10 Sustainable Supply ING IND35 Fundamentals of supply chain
Chain Management design and management.
Sustainability and product design,
procurement, production,
packaging, warehousing, transport,
delivery. Reverse logistics and

r	1	1		
			recycling. Life Cycle Assessment and certifications.	
11	Fundamentals of	ING INF 04	The course will provide a reasoned	
			-	
	Control Systems and		overview of the most important	
	Optimal Control		notions and results concerning	
			system dynamics, control theory	
			and optimal control. Lectures will	
			be devoted both to the theoretical	
			results and to their	
			implementation.	
12	Advanced Technologies	ING IND 16	New technologies, advanced	
	for Green		methodologies and best practices	
	Manufacturing		for green innovation of production	
			systems. Additive manufacturing:	
			general principles and applications	
			such as energy production,	
			mobility, aerospace and	
			biomedical; innovative materials	
			and processes; process monitoring	
			and control. Remanufacturing and	
			hybrid manufacturing.	
			Environmental advances in casting,	
			forming, machining and joining	
			processes. Zero-defect	
			manufacturing: advanced	
			techniques for inspection and	
			quality, statistical process control,	
			design of experiments. Numerical	
			examples and laboratory	
			demonstrations. Analysis and	
			evaluation of industrial application	
			cases.	
13	Fundamentals of	ING IND 21	Fundamentals of physical	
	Metallurgy		metallurgy: crystallography,	
			reinforcing mechanisms for metals,	
			phase diagrams (Fe-C diagram).	
			Fundamentals of solidification and	
			diffusion: thermodynamics and	
			kinetics. The shrinkage and	
			segregations. Practical examples of	
			solidification: solidification in	
			ingot. Massive and surface heat	
			treatments: solid state	
			transformations. Thermodynamics	
			and kinetics of solid reactions.	
			Steel heat treatments: annealing,	
			_	
			quenching, tempering and aging.	
			Surface treatments: surface	
			hardening, carburizing, nitriding,	
			boriding and anti-wear coatings.	
			Designation of steel,	
			Characterization and testing of	

			mately interview to man	
			metals. Introduction to non-	
			ferrous metals and alloys.	
14	Environmentally	ING IND 21	Introduction to physics and	
	Friendly Plants for		chemistry in steel/metal making,	
	Steelmaking and		Fe-extractive metallurgy.	
	Metallurgy		Production of steel from iron ore:	
			blast furnace process, steel	
			treatment of iron, conversion	
			process of iron,. Direct Reduction	
			of iron ore. Energy and	
			environmental aspects of the steel	
			making processes from iron ore.	
			Production of steel from scrap:	
			electric furnace metallurgy,	
			Secondary metallurgy, Secondary	
			metallurgy. Energy and	
			environmental aspects of the steel	
			making processes from scrap. The	
			production of stainless steel. Static	
			and continuous casting. Remelting	
			processes of steel. Introduction to	
			plastic deformation of metals:	
			rolling and forging. Energy and	
			environmental aspects of plastic	
			deformation processes.	
15	Materials for	ING IND 22	A detailed knowledge of the	
	Sustainable Industrial		manufacturing processes, which	
	Manufacturing		lead to the fabrication of	
	Processes		technological products, and the	
			correct selection at the design	
			stage of the best-suited materials	
			to the specific applications, can be	
			key elements for a more	
			sustainable industrial production.	
			The course, after a review of some specific basics of materials science	
			and technology, aims to provide new methodologies to approach	
			the materials selection and their	
			design, combining in operation	
			performances and cost	
			containment with the requirement	
			to minimize the environmental	
			impact of product manufacturing,	
16	Industrial eco-efficiency	ING IND 17	use, and disposal. The course aims to provide eco-	
10			efficiency assessment tools for	
			analysing the environmental	
			impact of industrial operations,	
			logistics systems and service	
			facilities. Technology system and	
			alternative sources integrations in	
I			service facilities and logistics are	

		T		1 1
			analysed to achieve sustainability	
			goals. Tools for planning and	
			evaluating eco-efficiency strategies	
			at the industry system level and	
			under conditions of uncertainty are	
			also studied (DSS, MCDM, MCDA).	
			Real case studies are examined and	
			discussed	
17	Sustainable Energy	ING IND 9	The course focuses on innovative	
17	Sustainable Energy	ING IND 9		
	Conversion Systems		technologies for energy	
			conversion, providing students	
			with knowledge of the	
			configurations and the energy	
			performance of thermal power	
			plants of various sizes (from	
			distributed micro-generation to	
1			large scale), driven by different	
			fuels (fossil fuels, biofuels, and e-	
			fuels) or by external heat sources	
			(such as waste heat, geothermal	
			heat, solar heat).Technology	
			options (e.g. flue gas treatment,	
			carbon capture and storage) and	
			operations modes (e.g.	
			polygeneration) aimed at	
			minimizing the environmental	
			impact of power generation will be	
			covered. Student will gain insights	
			into performance trade-offs, as	
			well as into the challenges and	
			opportunities of integrating	
			advanced power plants within	
			smart energy grids.	
18	Decarbonization of	ING IND 27	Analyze the most relevant low-	
	Processing Industry		carbon technologies currently	
			being proposed in the framework	
1			of policies aimed at reducing	
			carbon emissions and mitigating	
			climate changes. Principles and	
			applications of CO2 capture,	
			separation, sequestration	
			technologies (Carbon Capture and	
			Storage - CCS, geological storage,	
			exhaust gas separation, Direct Air	
1			Capture – DAC). CO2 valorization	
1			technologies to added-value	
			products such as fuels/e-fuels,	
1			polymers, chemicals. Reminders of	
			core concepts of catalysis, ab- and	
			ad-sorption Examples of	
			thermocatalytic CO2 conversion	
			(Sabatier reaction, Reverse Water	
			Gas Shift Reaction – RWGS, Dry	
L		1	Gus Shint Reaction - RWOS, DIY	

		[
			Reforming of Methane – DRM).	
			Examples of carbon intensive	
			sectors (steel, chemical, cement,	
			power) and strategies for their	
			decarbonization. Laboratory	
			practice in a few selected examples	
			will be carried out.	
19	Hydrogen Technologies	ING IND 27	The course aims to describe the	
			properties of hydrogen as an	
			energy carrier and its role in the	
			energy transition and the circular	
			economy both as a means of	
			decarbonisation and energy	
			storage from renewable sources. It	
			will be divided into the following	
			topics: Hydrogen identity card:	
			Hydrogen chemical and physical	
			properties, abundance, reactivity.	
			Safety and standards. Technologies	
			for the production	
			(thermocatalysis, electrocatalysis,	
			photocatalysis, electrocatalysis,	
			storage (compression, liquefaction,	
			hydrides) of hydrogen. Uses of	
			hydrogen in energy and transport	
			sectors: H2 combustion engine,	
			and fuel cells. Applications in heavy	
			transport (ships, trucks, trains).	
			Fundamentals and applications of	
			fuel cells with lab activity to	
			consolidate theoretical aspects. H2	
			versus batteries in the circular	
			economy (energy storage chains	
			from renewable sources,	
			decarbonisation processes).	