
University of Udine

Department of Mathematics and Computer Science

PREPRINT

Satisfiability and Model Checking for the Logic of
Sub-Intervals under the Homogeneity Assumption

Laura Bozzelli, Alberto Molinari, Angelo Montanari, Adriano Peron, Pietro Sala

Preprint nr.: 4/2017

Reports available from: https://www.dimi.uniud.it/preprints/

Satisfiability and Model Checking for the Logic of
Sub-Intervals under the Homogeneity Assumption

Laura Bozzelli, Alberto Molinari, Angelo Montanari,

Adriano Peron, and Pietro Sala

Abstract

In this paper, we investigate the finite satisfiability and model checking problems for the

logic D of the sub-interval relation under the homogeneity assumption, that constrains a

proposition letter to hold over an interval if and only if it holds over all its points. First we

prove that the satisfiability problem for D, over finite linear orders, is PSPACE-complete;

then we show that its model checking problem, over finite Kripke structures, is PSPACE-

complete as well.

1 Introduction

For a long time, interval temporal logic (ITL) was considered as an attractive, but impractical,
alternative to standard point-based ones. On the one hand, as pointed out, among others, by
Kamp and Reyle [KR93], “truth, as it pertains to language in the way we use it, relates sentences
not to instants but to temporal intervals”, and thus ITL is a natural choice for a specifica-
tion/representation language; on the other hand, the high undecidability of the satisfiability
problem for the most well-known ITLs, such as Halpern and Shoham’s HS [HS91] and Venema’s
CDT [Ven91], prevented an extensive use of them (in fact, some very restricted variants of them
have been successfully applied in formal verification and AI over the years).

The recent discovery of a significant number of expressive enough and computationally well-
behaved ITLs changed the landscape a lot [DGMS11, Mon16]. Among them, the logic AA of
temporal neighborhood [BGMS09] and the logic D of (temporal) sub-intervals [BGMS10] have a
central position. In this paper, we focus on the latter one. D features one modality only, which
corresponds to the Allen relation during [All83]. Since any sub-interval can be defined as an
initial sub-interval of an ending one, or, equivalently, as an ending sub-interval of an initial one,
it is a (proper) fragment of the logic BE of Allen’s relations started-by and finished-by. From
a computational point of view, D is a real character: its satisfiability problem is PSPACE-
complete over the class of dense linear orders [BGMS10, Sha04] (the problem is undecidable for
BE [Lod00]), it becomes undecidable when the logic is interpreted over the classes of finite and
discrete linear orders [MM14], and it is still unknown over the class of all linear orders. As for
its expressiveness, unlike AA—which is expressively complete with respect to the two-variable
fragment of first-order logic for binary relational structures over various linearly-ordered domains
[BGMS09, Ott01]—three variables are needed to encode D in first-order logic (the two-variable
property is a sufficient condition for decidability, but it is not a necessary one).

In this paper, we show that the decidability of the satisfiability problem for D over the class
of finite linear orders can be recovered under the homogeneity assumption (such an assumption
constrains a proposition letter to hold over an interval if and only if it holds over all its points).
We first prove that the problem belongs to PSPACE by exploiting a suitable contraction method.

1

In addition, we prove that the proposed satisfiability checking algorithm can be turned into a
PSPACE model checking procedure for D formulas over finite Kripke structures (under the
homogeneity assumption); PSPACE-hardness of both problems follows via a reduction from the
language universality problem of nondeterministic finite-state automata. PSPACE-completeness
of D model checking strongly contrasts with the case of BE, for which only a nonelementary
model checking procedure is known [MMM+16] and an EXPSPACE-hardness result has been
given [BMM+16].

The rest of the paper is organized as follows. In Section 2, we provide some background
knowledge. Then, in Section 3, we prove the PSPACE membership of the satisfiability problem
for D over finite linear orders (under the homogeneity assumption). Finally, in Section 4, we
show that the model checking problem for D over finite Kripke structures (again, under the
homogeneity assumption) is in PSPACE as well.

2 The logic D of the sub-interval relation

Let S = hS,<i be a linear order. An interval over S is an ordered pair [x, y], where x y. We
denote the set of all intervals over S by I(S). We consider three possible sub-interval relations: (i)
the reflexive sub-interval relation (denoted as v), defined by [x, y] v [x0, y0] iff x0 x and y y0,
(ii) the proper (or irreflexive) sub-interval relation (denoted as @), defined by [x, y] @ [x0, y0]
iff [x, y] v [x0, y0] and [x, y] 6= [x0, y0], and (iii) the strict sub-interval relation (denoted as @·),
defined by [x, y]@· [x0, y0] iff x0 < x and y < y0.

The three modal logics Dv, D@, and D@· feature the same language, consisting of a set AP
of proposition letters/variables, the logical connectives ¬ and _, and the modal operator hDi.
Formally, formulae are defined by the grammar: ' ::= p | ¬' | ' _ ' | hDi', with p 2 AP . The
other connectives, as well as the logical constants > (true) and ? (false), are defined as usual;
moreover, the dual universal modal operator [D]' is defined as ¬hDi¬'. The length of a formula
', denoted as |'|, is the number of sub-formulas of '.

The semantics of D@· , D@, and Dv only differ in the interpretation of the hDi operator. For
the sake of brevity, we use � 2 {@· ,@,v} as a shorthand for any of the three sub-interval relations.
The semantics of a sub-interval logic D� is defined in terms of interval models M = hI(S), �,Vi.
The valuation function V : AP 7! 2

I(S) assigns to every proposition variable p the set of intervals
V(p) over which p holds. The satisfiability relation |= is defined as:

• for every proposition letter p 2 AP , M, [x, y] |= p iff [x, y] 2 V(p);

• M, [x, y] |= ¬ iff M, [x, y] 6|= (i.e., it is not true that M, [x, y] |=);

• M, [x, y] |=
1

_
2

iff M, [x, y] |=
1

or M, [x, y] |=
2

;

• M, [x, y] |= hDi iff there is an interval [x0, y0] 2 I(S) s.t. [x0, y0] � [x, y] and M, [x0, y0] |= .

A D�-formula is D�-satisfiable if it holds over some interval of an interval model and it is D�-valid
if it holds over every interval of every interval model.

In this paper, we restrict our attention to the finite satisfiability problem, that is, satisfiability
over the class of finite linear orders. The problem has been shown to be undecidable for D@ and
D@· [MM14] and decidable for Dv [MPS10]. In the following, we show that decidability can be
recovered for D@ and D@· by restricting to the class of homogeneous interval models. We fully
work out the case of D@ (for the sake of simplicity, we will write D for D@), and then we briefly
explain how to adapt the proofs to D@· .

2

Definition 1. A model M = hI(S), �,Vi is homogeneous if, for every interval [x, y] 2 I(S) and

every p 2 AP , it holds that [x, y] 2 V(p) iff [x0, x0
] 2 V(p) for every x x0 y.

Hereafter, we will refer to the logic D interpreted over homogeneous models as D|Hom

.

2.1 A spatial representation of interval models
We now introduce some basic definitions and notation which will be extensively used in the
following. Given a D-formula ', we define the closure of ', denoted by CL('), as the set of all
sub-formulas of ' and of their negations ¬ (we identify ¬¬ with).

Definition 2. Given a D-formula ', a '-atom A is a subset of CL(') such that: (i) for every

 2 CL('), 2 A iff ¬ /2 A, and (ii) for every
1

_
2

2 CL('),
1

_
2

2 A iff
1

2 A or

2

2 A.

The idea underlying atoms is to enforce a “local” (or Boolean) form of consistency among the
formulas it contains, that is, a '-atom A is a maximal, locally consistent subset of CL('). As an
example, ¬(

1

_
2

) 2 A iff ¬
1

2 A and ¬
2

2 A. However, note that the definition does not
set any constraint on hDi formulas, hence the word “local”. We denote the set of all '-atoms as
A

'

; its cardinality is clearly bounded by 2

|'| (by point (i) of Definition 2). Atoms are connected
by the following binary relation D

'

.

Definition 3. Let D
'

be a binary relation over A
'

such that, for each pair of atoms A,A0 2 A
'

,

A D
'

A0
holds iff both 2 A0

and [D] 2 A0
for each formula [D] 2 A.

Let A be a '-atom. We denote by Req
D

(A) the set { 2 CL(') : hDi 2 A} of “temporal
requests” of A. In particular, if /2 Req

D

(A), then [D]¬ 2 A (by the definition of '-atom).
Moreover, we denote by REQ

'

the set of all arguments of hDi-formulas in CL('), namely,
REQ

'

= { : hDi 2 CL(')}. Finally, we denote by Obs
D

(A) the set { 2 A : 2 REQ

'

}
of observables of A. It is easy to prove by induction the next proposition, stating that, once
the proposition letters of A and its temporal requests have been fixed, A gets unambiguously
determined.

Proposition 4. For any D-formula ', given a set R ✓ REQ

'

and a set P ✓ CL(') \ AP , there

exists a unique '-atom A that satisfies Req
D

(A) = R and A \ AP = P .

We now provide a natural interpretation of D over grid-like structures, called compass

structures, by exploiting the existence of a natural bijection between intervals [x, y] and points
(x, y), with x y, of an S⇥S grid, where S = hS,<i is a finite linear order. Such an interpretation
was originally proposed by Venema in [Ven90], and it can also be given for HS and all its (other)
fragments.

As an example, Figure 1 shows four intervals [x
0

, y
0

], . . . , [x
3

, y
3

], respectively represented
by the points in the grid (x

0

, y
0

), . . . , (x
3

, y
3

), such that: (i) [x
0

, y
0

], [x
1

, y
1

], [x
2

, y
2

] @ [x
3

, y
3

],
(ii) [x

1

, y
1

]@· [x
3

, y
3

], and (iii) [x
0

, y
0

], [x
2

, y
2

] 6@· [x
3

, y
3

]. The red region highlighted in Figure 1
contains all and only the points (x, y) such that [x, y] @ [x

3

, y
3

]. Allen interval relation contains

can thus be represented as a spatial relation between pairs of points. In the following, we make
use of @ also for relating points, i.e., given two points (x, y), (x0, y0) of the grid, (x0, y0) @ (x, y)
iff (x0, y0) 6= (x, y) and x x0 y0 y. Compass structures, repeatedly exploited to establish
the following complexity results, can be formally defined as follows.

Definition 5. Given a finite linear order S = hS,<i and a D-formula ', a compass '-structure
is a pair G = (PS,L), where PS is the set of points of the form (x, y), with x, y 2 S and x y,

3

(x
0

, y
0

)

(x
3

, y
3

)

(x
1

, y
1

)

(x
2

, y
2

)

[x
0

, y
0

]

[x
3

, y
3

]

[x
1

, y
1

]

[x
2

, y
2

]

Figure 1: Correspondence between intervals and points of the compass structure.

and L is a function that maps any point (x, y) 2 PS to a '-atom L(x, y) in such a way that for

every pair of points (x, y) 6= (x0, y0) 2 PS , if x x0 y0 y then L(x, y) D
'

L(x0, y0) (temporal
consistency).

Due to temporal consistency, the following important property holds in compass structures.

Lemma 6. Given a compass '-structure G = (PS,L), for all pairs of points (x0, y0), (x, y) 2 PS,
if (x0, y0) @ (x, y) then Req

D

(L(x0, y0)) ✓ Req
D

(L(x, y)) and Obs
D

(L(x0, y0)) ✓ Req
D

(L(x, y)).

Proof. By Definition 5 we have L(x, y) D
'

L(x0, y0). Let us assume by contradiction that
there exists 2 Req

D

(L(x0, y0)) \ Req
D

(L(x, y)). By definition of Req
D

and by Definition 2,
we have that 2 Req

D

(L(x0, y0)) implies hDi 2 L(x0, y0), and /2 Req
D

(L(x, y)) implies
¬hDi = [D]¬ 2 L(x, y). Since L(x, y) D

'

L(x0, y0), then [D]¬ 2 L(x0, y0) and thus we can
conclude that both [D]¬ and hDi belong to L(x0, y0) (contradiction).

Obs
D

(L(x0, y0)) ✓ Req
D

(L(x, y)) can analogously be proved by contradiction.

Fulfilling compass structures are defined as follows.

Definition 7. A compass '-structure G = (PS,L) is said to be fulfilling if, for every point

(x, y) 2 PS and each formula 2 Req
D

(L(x, y)), there exists a point (x0, y0) @ (x, y) in PS such

that 2 L(x0, y0).

Note that if G is fulfilling, then Req
D

(L(x, x)) = ; for all points “on the diagonal” (x, x) 2 PS.
We say that a compass '-structure G = (PS,L) features a formula if there exists a point

(x, y) 2 PS such that 2 L(x, y). The following result holds.

Proposition 8. A D-formula ' is satisfiable iff there is a fulfilling compass '-structure that

features it.

In a fulfilling compass '-structure G = (PS,L), where S = {0, . . . , t}, w.l.o.g., we will sometimes
assume ' to be satisfied by the maximal interval [0, t], that is, ' 2 L(0, t).

The notion of homogeneous models directly transfers to compass structures.

Definition 9. A compass '-structure G = (PS,L) is homogeneous if, for every point (x, y) 2 PS
and each p 2 AP , we have that p 2 L(x, y) iff p 2 L(x0, x0

) for all x x0 y.

Proposition 8 can be tailored to homogeneous compass structures as follows.

Proposition 10. A D|Hom

-formula ' is satisfiable iff there is a fulfilling homogeneous compass

'-structure that features it.

4

3 Satisfiability of D|Hom over finite linear orders

In this section, we devise a satisfiability checking procedure for D|Hom

-formulas over finite linear
orders, which will also allow us to easily derive a model checking algorithm for D|Hom

over finite
Kripke structures. To start with, we show that there is a ternary relation between '-atoms, that
we denote by D' , such that if it holds among all atoms in consecutive positions of a compass
'-structure, then the structure is fulfilling. Hence, we may say that D' is the rule for labeling
fulfilling compasses. Next, we introduce an equivalence relation ⇠ between rows of a compass
'-structure. Since it has finite index—exponentially bounded by |'|—and it preserves fulfillment
of compasses, it is intuitively possible to “contract” the structures when we can find two related
rows. Moreover, any contraction done according to ⇠ keeps the same atoms (only the number of
their occurrences may vary), and thus if a compass features ' before the contraction, then ' is
still featured after it. This fact is exploited to build a satisfiability algorithm for D|Hom

-formulas
which makes use of polynomial working space only, because (i) it only needs to keep track of two
rows of a compass at a time, (ii) all rows satisfy some nice properties that make it possible to
succinctly encode them, and (iii) compass contractions are implicitly performed by means of a
reachability check in a suitable graph, whose nodes are the equivalence classes of ⇠.

Let us now introduce the aforementioned ternary relation D' among atoms.

Definition 11. Given three '-atoms A
1

, A
2

and A
3

, we say that A
3

is D
'

-generated by A
1

, A
2

(written A
1

A
2

D' A
3

) if: (i) A
3

\ AP = A
1

\ A
2

\ AP and (ii) Req
D

(A
3

) = Req
D

(A
1

) [
Req

D

(A
2

) [Obs
D

(A
1

) [Obs
D

(A
2

).

It is immediate to show that A
1

A
2

D' A
3

iff A
2

A
1

D' A
3

(i.e., the order of the first two
components in the ternary relation is irrelevant). The next result, following from Proposition 4,
proves that D' expresses a functional dependency on '-atoms.

Lemma 12. Given two '-atoms A
1

, A
2

2 A
'

, there exists exactly one '-atom A
3

2 A
'

such

that A
1

A
2

D' A
3

.

Proof. Let us suppose by contradiction that there exist A
3

and A0
3

in A
'

such that A
3

6= A0
3

,
A

1

A
2

D' A
3

and A
1

A
2

D' A0
3

. By Definition 2 we can assume w.l.o.g. that there exists
 2 CL(') such that 2 A

3

and ¬ 2 A0
3

. Moreover we choose as a minimal formula that
satisfies 2 A

3

and ¬ 2 A0
3

, i.e., each proper sub-formula 0 of either belongs to both A
3

and A0
3

or does not belong to either A
3

or A0
3

.
Let us now prove that we get a contradiction. If = p, with p 2 AP , by Definition 11

A
3

\ AP = A
1

\ A
2

\ AP and thus p 2 A
1

\ A
2

\ AP ; since A0
3

\ AP = A
1

\ A
2

\ AP , we have
p 2 A0

3

. Hence, both p and ¬p belong to A0
3

which contradicts Definition 2.
If = ¬

1

, by the minimality of , either
1

2 A
3

\A0
3

or
1

/2 A
3

[A0
3

. In the former case
we have ¬

1

,
1

2 A
3

(contradiction). As for the latter, since we are assuming ¬ 2 A0
3

, we have
¬¬

1

2 A0
3

, i.e.,
1

2 A0
3

(contradiction).
If =

1

_
2

, let us consider w.l.o.g. the case in which
1

2 A
3

. Since ¬(
1

_
2

) 2 A0
3

we
have ¬

1

2 A0
3

and thus
1

/2 A0
3

. However, by the minimality of and since
1

2 A
3

, we have
that

1

2 A0
3

(contradiction).
Finally, if = hDi

1

then ¬hDi
1

2 A0
3

, hence
1

/2 Req
D

(A0
3

) = Req
D

(A
1

) [Req
D

(A
2

) [
Obs

D

(A
1

) [Obs
D

(A
2

). Since 2 A
3

we have
1

2 Req
D

(A
3

) = Req
D

(A
1

) [Req
D

(A
2

) [
Obs

D

(A
1

) [Obs
D

(A
2

) (contradiction).

Definition 11 and Lemma 12 can be exploited to label a homogeneous compass '-structure G,
namely, to determine the '-atoms labeling all the points (x, y) of G, starting from the ones on
the diagonal. The idea is the following: if two '-atoms A

1

and A
2

label respectively the greatest

5

(x, y) (x+1, y)

(x, y�1)

x x+1

y

y�1 row
y�1

row
y

Figure 2: Rule for labeling homogeneous fulfilling compass '-structures

proper prefix [x, y�1], that is, the point (x, y�1), and the greatest proper suffix [x+1, y], that is,
(x+ 1, y), of the same interval [x, y], then the atom A

3

labeling [x, y] is unique, and it is precisely
the one satisfying A

1

A
2

D' A
3

(see Figure 2). The next lemma proves that this is the general
rule for labeling fulfilling homogeneous compasses.

Lemma 13. Let G = (PS,L). G is a fulfilling homogeneous compass '-structure iff, for every pair

x, y 2 S, we have: (i) L(x, y � 1)L(x+ 1, y) D' L(x, y) if x < y, and (ii) Req
D

(L(x, y)) = ; if

x = y.

Proof. ()) Let us consider x, y 2 S. First we note that, since G is fulfilling, it must be
Req

D

(L(x, y)) = ; whenever x = y. Otherwise, if x < y, we consider the labellings L(x, y�1) and
L(x+1, y). By the homogeneity property of Definition 9, L(x, y)\AP = L(x, y�1)\L(x+1, y)\AP :
condition (i) of Definition 11 holds. Moreover, since G is fulfilling, for every 2 Req

D

(L(x, y))
we have that either 2 L(x, y � 1), or 2 L(x+ 1, y), or 2 L(x0, y0) for some x < x0 y0 < y.
In the first two cases 2 Obs

D

(L(x, y � 1)) [Obs
D

(L(x + 1, y)). As for the last case, by
Lemma 6 Obs

D

(L(x0, y0)) ✓ Req
D

(L(x, y � 1)) and Obs
D

(L(x0, y0)) ✓ Req
D

(L(x+ 1, y)), hence
 2 Req

D

(L(x, y � 1)) and 2 Req
D

(L(x + 1, y)). We can conclude that Req
D

(L(x, y)) ✓
Obs

D

(L(x, y � 1)) [Obs
D

(L(x+ 1, y)) [Req
D

(L(x, y � 1)) [Req
D

(L(x+ 1, y)). The converse
inclusion (◆) follows by Lemma 6, hence condition (ii) of Definition 11 holds. We conclude that
L(x, y � 1)L(x+ 1, y) D' L(x, y).

(() Let us consider G = (PS,L) such that, for every pair x, y 2 S, x y, we have L(x, y �
1)L(x+ 1, y) D' L(x, y) if x < y, and Req

D

(L(x, y)) = ; if x = y. We have to prove that G is a
homogeneous fulfilling compass '-structure.

First, we prove consistency w.r.t. the relation D
'

. Let us show that, for all pairs of points
(x, y) and (x0, y0) with (x0, y0) @ (x, y), we have L(x, y) D

'

L(x0, y0). The proof is by induction
on � = (x0 � x) + (y� y0) � 1. If � = 1, either (x0, y0) = (x+ 1, y) or (x0, y0) = (x, y� 1). Let us
consider (x0, y0) = (x+1, y) (the other case is symmetric). Since L(x, y�1)L(x+1, y) D' L(x, y),
we easily get that L(x, y) D

'

L(x+1, y). If � � 2, since (x0, y0) @ (x, y), then (x0, y0 +1) @ (x, y)
or (x0 � 1, y0) @ (x, y). We only consider (x0 � 1, y0) @ (x, y), being the other case symmetric. By
the inductive hypothesis, L(x, y) D

'

L(x0�1, y0). Since L(x0�1, y0�1)L(x0, y0) D' L(x0�1, y0),
we have L(x0 � 1, y0) D

'

L(x0, y0). Let us observe that D
'

is a transitive relation, and thus
L(x, y) D

'

L(x0, y0).

6

Let us now show that G is fulfilling. We prove that for every point (x, y) 2 PS and for every
 2 Req

D

(L(x, y)), there exists (x0, y0) 2 PS, (x0, y0) @ (x, y) such that 2 L(x0, y0). The proof is
by induction on y� x � 0. If x = y, we have Req

D

(L(x, y)) = ;, hence the thesis holds vacuously.
If y � x � 1, since L(x, y � 1)L(x+ 1, y) D' L(x, y), we have Req

D

(L(x, y)) = Req
D

(L(x, y �
1)) [Req

D

(L(x + 1, y)) [Obs
D

(L(x, y � 1)) [Obs
D

(L(x + 1, y)). If 2 Obs
D

(L(x, y � 1)) [
Obs

D

(L(x+1, y)), the thesis is verified. If 2 Req
D

(L(x+1, y)) (the case 2 Req
D

(L(x, y�1))

is symmetric and thus omitted), by the inductive hypothesis, 2 L(x00, y00) for some (x00, y00) @
(x+ 1, y) @ (x, y).

It remains to prove that G is homogeneous. We have to show that, for every (x, y) 2 PS and
every p 2 AP , p 2 L(x, y) iff for every point (x0, x0

), with x x0 y, we have p 2 L(x0, x0
). The

proof is by induction on the length of the interval (x, y). If x = y the property trivially holds.
Let us consider now y � x > 0 (inductive step). By the inductive hypothesis, since (x+ 1, y) and
(x, y � 1) are shorter than (x, y), we have p 2 L(x + 1, y) (resp., p 2 L(x, y � 1)) iff, for every
(x0, x0

) with x+1 x0 y, (resp., x x0 y�1), p 2 L(x0, x0
). Thus p 2 L(x+1, y)\L(x, y�1)

iff for every (x0, x0
) with x x0 y, p 2 L(x0, x0

). Since L(x+ 1, y)L(x, y � 1)

D' L(x, y), we
have L(x, y) \ AP = L(x + 1, y) \ L(x, y � 1) \ AP . Therefore p 2 L(x, y) iff for every (x0, x0

),
with x x0 y, we have p 2 L(x0, x0

).

Now we introduce the concept of '-row, which can be viewed as the ordered sequence of (the
occurrences of) atoms labelling a row of a compass '-structure. Given an atom A 2 A

'

, we call
it reflexive if A D

'

A, irreflexive otherwise.

Definition 14. A '-row is a finite sequence of '-atoms row = Am0
0

· · ·Amn
n

, where Am

stands

for m repetitions of A, such that for each 0 i n, we have that m
i

> 0—if m
i

> 1, then A
i

is

reflexive—and for each 0 j < i, it holds that A
i

D
'

A
j

, A
i

6= A
j

, and (A
j

\ AP) ◆ (A
i

\ AP).
Moreover, Req

D

(A
0

) = ;.

The length of a '-row row = Am0
0

· · ·Amn
n

is defined as |row| =
P

0in

m
i

, and for each
0 j < |row|, the j-th element, denoted by row[j], is the j-th symbol in the word Am0

0

· · ·Amn
n

,
e.g., row[0] = A

0

, row[m
0

] = A
1

, We denote by Rows
'

the set of all possible '-rows. This
set may be infinite.

The number of distinct atoms in any '-row is bounded. Since for each 0 i n and each
0 j < i, A

i

D
'

A
j

, it holds that Req
D

(A
j

) ✓ Req
D

(A
i

). Therefore, two monotonic sequences
for every '-row can be considered, one increasing, i.e., ; = Req

D

(A
0

) ✓ Req
D

(A
1

) ✓ . . . ✓
Req

D

(A
n

), and one decreasing, i.e., (A
0

\ AP) ◆ (A
1

\ AP) ◆ . . . ◆ (A
n

\ AP). The number
of distinct elements is bounded by |'| in the former sequence and by |'| + 1 in the latter (as
|REQ

'

| |'| � 1 and |AP | |'|–w.l.o.g., we can consider only the letters actually occurring
in '). Since, as already shown (Proposition 4), a set of requests and a set of proposition letters
uniquely determine a '-atom, any '-row may feature at most 2|'| distinct atoms, i.e., n < 2|'|.

Given a homogeneous compass '-structure G = (PS,L), for every y 2 S, we define row
y

as
the word of '-atoms row

y

= L(y, y) · · · L(0, y), i.e., the sequence of atoms labeling points of G
with the same y-coordinate, starting from the one on the diagonal inwards (see Figure 2).

Lemma 15. Let G = (PS,L) be a fulfilling homogeneous compass '-structure. For every y 2 S,

row
y

is a '-row.

Proof. Let row
y

= L(y, y)m0L(y�m
0

, y)m1 · · · L(y�
P

0i<n

m
i

, y)mn where, for every 0 j n,
L(y �

P
0i<j

m
j

, y)mj is a maximal substring of identical atoms (note that any row
y

can
be represented w.l.o.g. in this way, for m

i

> 0). Since (y, y) @ . . . @ (0, y), by Lemma 6,
Req

D

(L(y, y)) ✓ Req
D

(L(y � m
0

, y)) ✓ . . . ✓ Req
D

(L(y �
P

0i<n

m
i

, y)). Moreover, by
homogeneity, (L(y, y) \ AP) ◆ (L(y � m

0

, y) \ AP) ◆ . . . ◆ (L(y �
P

0i<n

m
i

, y) \ AP). By

7

row
1

A
i . . . "k . . . A

i

B0B00. . .B000. . .B000

=

row
2

m
i

start
i

positions

rank(A
i

) � rank(B0
) > rank(B00

) > . . . > rank(B000
)

B0
= row

2

[start
i

+ 1]

Figure 3: A graphical account of the proof of Lemma 18.

maximality, L(y �
P

0i<j

m
i

, y) 6= L(y �
P

0i<j�1

m
i

, y) for every 0 < j n, and thus, since
'-atoms are uniquely determined by a pair R ✓ REQ

'

and P ✓ AP which are monotonically
arranged, we can conclude that L(y�

P
0i<j

m
i

, y) 6= L(y�
P

0i<j

0 m
i

, y) for every j0 < j. Now
we prove that m

j

= 1 if L(y �
P

0i<j

m
i

, y) is irreflexive. By contradiction let us suppose that
m

j

> 1; then L(y�
P

0i<j

m
i

, y) = L(y�(
P

0i<j

m
i

)�1, y). Since L(y�(
P

0i<j

m
i

)�1, y) D
'

L(y �
P

0i<j

m
i

, y), then L(y �
P

0i<j

m
i

, y) is reflexive (contradiction). Finally we have
Req

D

(L(y, y)) = ;, as G is fulfilling.

We now define the successor relation between pairs of '-rows, denoted as row' , which is
basically a component-wise application of D' over the elements of two '-rows (remember that
atoms on rows are collected from right to left).

Definition 16. Given two '-rows row and row0
, we say that row0

is a successor of row, or

row row' row0
, if |row0| = |row|+ 1, and for all 0 i < |row|, row[i]row0

[i] D' row0
[i+ 1].

The next lemma states that consecutive rows in homogeneous fulfilling compass '-structures
respect the successor relation.

Lemma 17. Let G = (PS,L), with Req
D

(L(x, x)) = ; for all (x, x) 2 PS. G is a fulfilling

homogeneous compass '-structure iff, for each 0 y < |S|� 1, row
y

row' row
y+1

.

Proof. ()) By Lemma 15, the rows row
0

, . . . , row|S|�1

of G are '-rows. By Lemma 13, for every
0 x y, L(x, y)L(x + 1, y + 1)

D' L(x, y + 1). Since L(x, y) = row
y

[y � x], L(x + 1, y +

1) = row
y+1

[(y + 1) � (x + 1)], and L(x, y + 1) = row
y+1

[(y + 1) � x] we can conclude that
row

y

row' row
y+1

.
(() Since for each 0 y < |S| � 1, row

y

row' row
y+1

, we have that for all 0 i y,
row

y

[i]row
y+1

[i] D' row
y+1

[i + 1], namely, L(y � i, y)L(y + 1 � i, y + 1)

D' L(y � i, y + 1).
Let x = y � i, for 0 x y. We get L(x, y)L(x+ 1, y + 1)

D' L(x, y + 1). By Lemma 13, G is
a fulfilling homogeneous compass '-structure.

Given an atom A 2 A
'

, we define the rank of A, written rank(A), as |REQ
'

|� |Req
D

(A)|.
Clearly, rank(A) < |'|. Whenever A D

'

A0, for some A0 2 A
'

, Req
D

(A0
) ✓ Req

D

(A), and hence
rank(A) rank(A0

) and |Req
D

(A) \Req
D

(A0
)| rank(A0

). We can see the rank of an atom as
the “number of degrees of freedom” that it gives to the atoms that stay “above it”. In particular,
by definition, for every '-row row = Am0

0

· · ·Amn
n

, we have rank(A
0

) � . . . � rank(A
n

). The
next result uses the notion of rank to provide an insight on how consecutive '-rows are connected
(see Figure 3).

8

Lemma 18. Let row
1

, row
2

be two '-rows, with row
1

= Am0
0

· · ·Amn
n

and row
1

row' row
2

.

For each 0 i n, let start
i

=

P
0j<i

m
j

. If m
i

> rank(A
i

), then there exists start
i

< k
start

i

+m
i

such that:

(i) row
2

[k] is reflexive;

(ii) rank(row
2

[j]) > rank(row
2

[j + 1]) for each start
i

< j < k;

(iii) row
2

[j] = row
2

[j + 1] for each k j < start
i

+m
i

;

(iv) if m0
is the exponent of the atom row

2

[k], then m0 > rank(row
2

[k]).

Proof. If m
i

= 1, by hypothesis we have rank(A
i

) = 0. Hence, rank(row
2

[start
i

+ 1]) = 0,
because row

1

row' row
2

, and thus row
2

[start
i

+ 1] is (trivially) reflexive. All claims hold by
choosing k = start

i

+ 1.
Let us then assume m

i

> 1. First, we prove that for each start
i

< j start
i

+ m
i

, if
row

2

[j] is reflexive, then for each j j0 start
i

+m
i

, row
2

[j0] = row
2

[j]. If j = start
i

+m
i

there is nothing to prove. Thus, let us consider j < start
i

+ m
i

. Since we are assuming
that row

2

[j] is reflexive, then Obs
D

(row
2

[j]) ✓ Req
D

(row
2

[j]). Since row
1

row' row
2

, we
have that Req

D

(A
i

),Obs
D

(A
i

) ✓ Req
D

(row
2

[j]), and Req
D

(row
2

[j + 1]) = Req
D

(row
2

[j]) [
Obs

D

(row
2

[j])[Req
D

(A
i

)[Obs
D

(A
i

) = Req
D

(row
2

[j]). Moreover, again from row
1

row' row
2

,
we have that row

2

[j] \ AP = row
2

[j � 1] \A
i

\ AP and row
2

[j + 1] \ AP = row
2

[j] \A
i

\ AP =

row
2

[j � 1] \A
i

\ AP . Thus, row
2

[j + 1] = row
2

[j], because the two atoms feature exactly the
same requests and proposition letters (Proposition 4). Then, since A

i

row
2

[j] D' row
2

[j + 1],
by iterating the reasoning and exploiting Lemma 12 we can conclude that row

2

[j] = row
2

[j0] for
each j j0 start

i

+m
i

.
Now, it can be easily shown that if we have two atoms A and A0 such that A D

'

A0 and
A0 is irreflexive, then rank(A) < rank(A0

), and we have just proved that we cannot interleave
reflexive atoms with irreflexive ones “above” the A

i

’s (all irreflexive atoms must “come before”
reflexive ones in the part of row

2

“above” the A
i

’s). Thus, in the worst possible case, the atoms
row

2

[start
i

+1], . . . , row
2

[start
i

+rank(A
i

)] may be irreflexive (as rank(row
2

[start
i

+1]) > . . . >
rank(row

2

[start
i

+rank(A
i

)]) and rank(A
i

) � rank(row
2

[start
i

+1])). Note that these irreflexive
atoms may be the “first” rank(A

i

) atoms above the A
i

’s only, and not the “first” rank(A
i

)+1, since
any atom with rank equal to 0 is reflexive. We conclude that row

2

[start
i

+ rank(A
i

)+ 1] must be
reflexive. Thus, we can choose k = start

i

+ rank(A
i

)+1. Since by hypothesis m
i

� rank(A
i

)+1,
we get that start

i

< k start
i

+m
i

.
As for the last claim, we have that rank(row

2

[k]) rank(row
2

[start
i

+1])� (k�start
i

�1)
rank(A

i

)� (k�start
i

�1). Then, the exponent m0 of row
2

[k] is such that m0 � m
i

� (rank(A
i

)�
rank(row

2

[k])), that is, at least m
i

� (rank(A
i

)�rank(row
2

[k])) atoms labelled by row
2

[k] occur
in the block start

i

+1, . . . , start
i

+m
i

of row
2

(see Figure 3). Since by hypothesis m
i

> rank(A
i

),
then m

i

� rank(A
i

) > 0 and rank(row
2

[k]) < m0.

Now we introduce an equivalence relation ⇠ over Rows
'

which is the key ingredient of the
proofs showing that both satisfiability and MC for D|Hom

-formulas are decidable.

Definition 19. Given two '-rows row
1

= Am0
0

· · ·Amn
n

and row
2

=

ˆAm̂0
0

· · · ˆAm̂n̂
n̂

, we say that

they are equivalent, written row
1

⇠ row
2

, if (i) n = n̂, and (ii) for each 0 i n, A
i

=

ˆA
i

, and

m
i

= m̂
i

or both m
i

and m̂
i

are (strictly) greater than rank(A
i

).

Note that if two rows feature the same set of atoms, the lower the rank of an atom A
i

, the
lower the number of occurrences of A

i

both the rows have to feature in order to belong to the
same equivalence class. As an example, let row

1

and row
2

be two rows with row
1

= Am0
0

Am1
1

,

9

row
2

= Am0
0

Am1
1

, rank(A
0

) = 4, and rank(A
1

) = 3. If m
1

= 4 and m
1

= 5 they are both greater
than rank(A

1

), and hence they do not violate the condition for row
1

⇠ row
2

. On the other hand,
if m

0

= 4 and m
0

= 5, we have that m
0

is less than or equal to rank(A
0

). Thus, in this case,
row

1

6⇠ row
2

due to the indexes of A
0

. This happens because rank(A
0

) is greater than rank(A
1

).
Two cases in which row

1

⇠ row
2

are m
0

= m
0

and m
0

,m
0

� 5.
The relation ⇠ has finite index, which is roughly bounded by the number of all the possible

'-rows row = Am0
0

· · ·Amn
n

, with exponents m
i

ranging from 1 to |'|. Since (i) the number of
possible atoms is 2

|'|, (ii) the number of distinct atoms in any '-row is at most 2|'|, and (iii)
the number of possible functions f : {1, . . . , `}! {1, . . . , |'|} is |'|`, we have that the number of
distinct equivalence classes of ⇠ is bounded by

2|'|X

j=1

(2

|'|
)

j · |'|j 2

3|'|2 ,

which is exponential in the length of the input formula '. We denote the set of the equivalence
classes of ⇠ over all the possible '-rows by Rows⇠

'

.
Now we extend the relation row' to equivalence classes of ⇠ in the following way.

Definition 20. Given two '-row classes [row
1

]⇠ and [row
2

]⇠, we say that [row
2

]⇠ is a successor

of [row
1

]⇠, written [row
1

]⇠ row'
[row

2

]⇠, if there exist row0
1

2 [row
1

]⇠ and row0
2

2 [row
2

]⇠
such that row0

1

row' row0
2

.

The following result proves that if some row0
1

2 [row
1

]⇠ has a successor in [row
2

]⇠, then every

'-row of [row
1

]⇠ has a successor in [row
2

]⇠.

Lemma 21. Given two '-row classes [row
1

]⇠ and [row
2

]⇠ such that [row
1

]⇠ row'
[row

2

]⇠, for
every row 2 [row

1

]⇠ there exists row0 2 [row
2

]⇠ such that row row' row0
.

The proof, omitted for space reasons (it can be found in Appendix A.1), begins by considering
two '-rows, row and row, such that row 2 [row

1

]⇠, row 2 [row
2

]⇠, and row row' row (such a
pair always exists by Definition 20). Then, we consider another '-row, row0 6= row in [row

1

]⇠,
and we show (constructively) how to build row0 2 [row

2

]⇠ such that row0
row' row0. This

is sufficient to prove the claim: row0 is built by making use of the facts that row0 ⇠ row and
row row' row, and of the properties stated by Lemma 18.

The following result arranges the equivalence classes Rows⇠
'

in a graph G
'⇠.

Definition 22. Let ' be a D|Hom

-formula. The ' ⇠graph of ' is G
'⇠ = (Rows⇠

'

, row'
).

The next theorem reduces the problem of satisfiability checking for a D|Hom

-formula ' over
finite linear orders (equivalent, by Proposition 10, to deciding if there is a homogeneous fulfilling
compass '-structure that features ') to a reachability problem in the ' ⇠graph, allowing us to
determine the computational complexity of the former problem.

Theorem 23. Given a D|Hom

-formula ', there exists a homogeneous fulfilling compass '-

structure G = (PS,L) that features ' iff there exists a path in G
'⇠ = (Rows⇠

'

, row'
) from some

class [row]⇠ 2 Rows⇠
'

to some class [row0
]⇠ 2 Rows⇠

'

such that (1) there exists row
1

2 [row]⇠
with |row

1

| = 1, and (2) there exist row
2

2 [row0
]⇠ and 0 i < |row

2

| such that ' 2 row
2

[i].

Proof. Preliminarily we observe that, in (1), if |row
1

| = 1, then {row
1

} = [row]⇠; moreover, in (2),
if for row

2

2 [row0
]⇠ and 0 i < |row

2

| we have that ' 2 row
2

[i], then for any row0
2

2 [row0
]⇠,

there is 0 i0 < |row0
2

| such that ' 2 row0
2

[i0].

10

()) Let us consider a homogeneous fulfilling compass '-structure G = (PS,L) that features
'. By Lemmata 15 and 17, L(0, 0) row' row

1

row' · · · row' row
max(S)

. Thus there exist
two indexes 0 j max(S) and 0 i < |row

j

| for which ' 2 row
j

[i]. By Definition 20, we
get that [L(0, 0)]⇠ row'

[row
1

]⇠ row' · · · row'
[row

j

]⇠ is a path in G
'⇠; it is immediate to

check that it fulfils requirements (1) and (2).
(() Let us assume there is a path [row

0

]⇠ row' · · · row'
[row

m

]⇠ in G
'⇠ = (Rows⇠

'

, row'
)

for which |row
0

| = 1 and there exists i such that ' 2 row
m

[i]. By applying repeatedly Lemma 21
we get that there exists a sequence row0

0

row' · · · row' row0
m

of '-rows where row0
0

= row
0

,
for every 0 j m, row0

j

2 [row
j

]⇠, and there exists i0 such that ' 2 row0
m

[i0]. We observe
that, by Definition 16, |row0

j

| = |row0
j�1

| + 1 for 1 j m and, since |row0
0

| = 1, we have
|row0

j

| = j + 1. Let us now define G = (PS,L) where S = {0, . . . ,m} and L(x, y) = row0
y

[y � x]
for every 0 x y m. By Lemma 17, G is a fulfilling homogeneous compass '-structure.
Finally, since ' 2 row0

m

[i0], G features '.

The size of G
'⇠ = (Rows⇠

'

, row'
) is bounded by |Rows⇠

'

|2, which is exponential in |'|.
However, it is possible to (non-deterministically) perform a reachability in G

'⇠ by using space
logarithmic in |Rows⇠

'

|2. The non-deterministic procedure of Figure 4 exploits this fact in order
to decide the satisfiability of a D|Hom

-formula ', by using only a working space polynomial in |'|:
it searches for a suitable path in G

'⇠, [row
0

]⇠ row' · · · row'
[row

m

]⇠, where row
0

= A for
A 2 A

'

with Req
D

(A) = ;, m < M , and ' 2 row
m

[i] for 0 i < |row
m

|. At the j-th iteration
of line 4., row

j

is non-deterministically generated, and it is checked whether row
j�1

row' row
j

.
The procedure terminates after at most M iterations, where M is the maximum possible length
of a simple path in G

'⇠.
The working space used by the procedure is polynomial: M and step (which ranges in

[0,M � 1]) can be encoded in binary with dlog
2

Me+ 1 = O(|'|2) bits. At each step, we need to
keep track of two '-rows at a time, the current one, row, and its successor, row0: each '-row can
be represented as a sequence of at most 2|'| (distinct) atoms, each one with an exponent that, by
construction, cannot exceed M . Moreover, each '-atom A can be represented using exactly |'|
bits (for each 2 CL('), we set a bit to 1 if 2 A, and to 0 if ¬ 2 A). Hence a '-row can be
encoded using 2|'| · (|'|+ dlog

2

Me+ 1) = O(|'|3) bits. Finally, the condition row row' row0

can be checked by O(|'|2) bits of space once we have guessed row0. This analysis entails the
following result (we recall that NPSPACE = PSPACE).

Theorem 24. The satisfiability problem for D|Hom

-formulas over finite linear orders is in

PSPACE.

We now outline which are the modifications to the previous concepts needed for proving the

Input: a D|Hom

-formula '

1. Put M 23|'|2
, step 0 and row A for some atom A 2 A

'

with Req

D

(A) = ;.
2. If there exists 0 i < |row| such that ' 2 row[i], return satisfiable.

3. If step = M � 1, return unsatisfiable.

4. Non-deterministically generate a '-row row

0
and check that row

row'
row

0
.

5. Put step step+ 1 and row row

0
.

6. Go back to 2.

Figure 4: Non-deterministic procedure deciding the satisfiability of a D|Hom

-formula '

11

decidability of satisfiability for D|Hom

with the strict relation @· , in place of @. It is sufficient
to replace the definitions of D' , '-row and row' with the following ones. For the sake of
simplicity, we introduce a dummy atom �, for which we assume Req

D

(�) = Obs
D

(�) = ;.

Definition 25. Given A
1

, A
3

, A
4

2 A
'

and A
2

2 A
'

[{�}, we say that A
4

is D
'

@· -generated

by A
1

, A
2

, A
3

, written A
1

, A
2

, A
3

D'@· A
4

iff (i) A
4

\AP = A
1

\A
3

\AP and (ii) Req
D

(A
4

) =

Req
D

(A
1

) [Req
D

(A
3

) [Obs
D

(A
2

).

The idea of this definition is that, if an interval [x, y], with x < y, is labeled by A
4

, and
the three subintervals [x, y � 1], [x + 1, y � 1], and [x + 1, y] by A

1

, A
2

, A
3

, resp., we want
A

1

, A
2

, A
3

D'@· A
4

. In particular, if x = y � 1, then A
2

= � (because [x + 1, y � 1] is not
a valid interval). Note that only [x + 1, y � 1]@· [x, y], hence we want Obs

D

(A
2

) ✓ Req
D

(A
4

);
moreover, since the requests of A

1

and A
3

are fulfilled by a strict subinterval of [x, y], it must be
Req

D

(A
1

) ✓ Req
D

(A
4

) and Req
D

(A
3

) ✓ Req
D

(A
4

).

Definition 26. A '-@· -row is a finite sequence of '-atoms row = Am0
0

· · ·Amn
n

such that for

every 0 i n we have m
i

> 0, and for every 0 j < i, Req
D

(A
j

) ✓ Req
D

(A
i

), A
i

6= A
j

, and

(A
j

\ AP) ◆ (A
i

\ AP). Moreover Req
D

(A
0

) = ;.

Definition 27. Given two '-rows row and row0
, we say that row0

is a successor of row,

denoted as row row'@· row0
, if |row0| = |row|+ 1, and for every 0 i < |row|, row[i]row[i�

1]row0
[i] D'@· row0

[i+ 1], where we assume row[i� 1] = � if i = 0.

We conclude the section by stating the PSPACE-completeness of satisfiability for D|Hom

over finite linear orders (under both the strict and the proper semantic variants). The hardness
proof can be found in Appendix A.3.

Theorem 28. The satisfiability problem for D|Hom

-formulas over finite linear orders is PSPACE-

complete.

4 Model checking for D|Hom over Kripke structures

In this section we focus our attention on the model checking (MC) problem for D|Hom

, namely,
the problem of checking whether some behavioural properties, expressed as D|Hom

-formulas, are
satisfied by a model of a given system. The typical models are Kripke structures, which will now
be introduced along with the semantic definition of D|Hom

over them.

Definition 29. A finite Kripke structure is a tuple K = (AP ,W,E, µ, s
0

), where AP is a finite

set of proposition letters, W is a finite set of states, E ✓W ⇥W is a left-total relation between

states, µ : W ! 2

AP
is a total labelling function, and s

0

2W is the initial state.

For all s 2W , µ(s) is the set of proposition letters that hold on s, while E is the transition
relation that describes the evolution of the system over time.

Figure 5 depicts the finite Kripke structure K
2

= ({p, q}, {s
0

, s
1

}, E, µ, s
0

), with E =

{(s
0

, s
0

), (s
0

, s
1

), (s
1

, s
0

), (s
1

, s
1

)}, µ(s
0

) = {p}, and µ(s
1

) = {q}. The initial state s
0

is identified
by a double circle.

s0
p

s1
q

Figure 5: Kripke structure K
2

.

12

Definition 30. A trace ⇢ of a finite Kripke structure K = (AP ,W,E, µ, s
0

) is a finite sequence

of states s
1

· · · s
n

, with n � 1, such that (s
i

, s
i+1

) 2 E for i = 1, . . . , n� 1.

For any trace ⇢ = s
1

· · · s
n

, we define: (i) |⇢| = n, and for 0 i |⇢| � 1, ⇢(i) = s
i+1

; (ii)
⇢(i, j) = s

i+1

· · · s
j+1

, for 0 i j |⇢|� 1, is the subtrace of ⇢ bounded by i and j. Finally, if
the first state of ⇢ is s

0

(the initial state of K), ⇢ is called an initial trace.

Definition 31. The interval model M
⇢

= hI(S), �,Vi induced by a trace ⇢ of a finite Kripke

structure K = (AP ,W,E, µ, s
0

) is the homogeneous interval model such that:

(i) S = {0, . . . , |⇢|� 1}, and (ii) for all x 2 S and p 2 AP : [x, x] 2 V(p) iff p 2 µ(⇢(x)).

Definition 32. Let K be a finite Kripke structure and be a D|Hom

-formula. We say that a

trace ⇢(i, j) of K satisfies , denoted as K , ⇢(i, j) |= , iff M
⇢

, [i, j] |= . Moreover, we say that

K models , written K |= , iff for all initial traces ⇢0 of K , it holds that K , ⇢0 |= . The MC
problem for D|Hom

over finite Kripke structures is the problem of deciding if K |= .

Note that p 2 AP holds over ⇢ = s
1

· · · s
n

iff it holds over all the states s
1

, . . . , s
n

of ⇢
(homogeneity assumption). Since the number of initial traces of K is infinite, MC for D|Hom

over
Kripke structures is not trivially decidable.

We now describe how, with a slight modification of the previous satisfiability procedure,
it is possible to derive a MC algorithm for D|Hom

-formulas ' over finite Kripke structures K .
The idea is to consider some finite linear orders—not all the possible ones, unlike the case of
satisfiability—precisely those corresponding to (some) initial traces of K , checking whether ¬'
holds over them: in such a case we have found a counterexample, and we can conclude that K 6|= '.
To ensure this kind of “satisfiability driven by the traces of K ”, we make a product between K
and the previous graph G

'⇠, getting what we call a “(' ⇠ K)-graph”. In the following, we will
also exploit the notion of “compass structure induced by a trace ⇢ of K ”, which is a fulfilling
homogeneous compass '-structure built from ⇢ and completely determined by it.

Given a finite Kripke structure K = (AP ,W,E, µ, s
0

) and a D|Hom

-formula ', we consider
the (' ⇠ K)-graph G

'⇠K , which is basically the product of K and G
'⇠ = (Rows⇠

'

, row'
),

formally defined as: G
'⇠K = (�,⌅), where:

• � is the maximal subset of W ⇥Rows⇠
'

s.t.: if (s, [row]⇠) 2 � then µ(s) = row[0] \ AP ;

•
�
(s

1

, [row
1

]⇠), (s2, [row2

]⇠)
�
2 ⌅ iff (i)

�
(s

1

, [row
1

]⇠), (s2, [row2

]⇠)
�
2 �2, (ii) (s

1

, s
2

) 2 E,
and (iii) [row

1

]⇠ row'
[row

2

]⇠.

Note that the definition of � is well-given, since for all row0 2 [row]⇠, row0
[0] = row[0]. The size

of G
'⇠K is bounded by (|W | · |Rows⇠

'

|)2.
Given a generic trace ⇢ of K , we define the compass '-structure induced by ⇢ as the fulfilling

homogeneous compass '-structure G
(K ,⇢)

= (PS,L), where S = {0, . . . , |⇢|�1}, and for 0 x < |⇢|,
L(x, x) \ AP = µ(⇢(x)) and Req

D

(L(x, x)) = ;. Note that, given ⇢, G
(K ,⇢)

always exists and is
unique: all '-atoms L(x, x) “on the diagonal” are determined by the labeling of ⇢(x) (and by the
absence of requests). Moreover, by Lemma 17, all the other atoms L(x, y), for 0 x < y < |⇢|,
are determined by the row' relation between '-rows.

The following property can easily be proved by induction.

Proposition 33. Given a Kripke structure K , a trace ⇢ of K , and a D|Hom

-formula ', for all

0 x y < |⇢| and for all subformulas of ': K , ⇢(x, y) |= iff 2 L(x, y) in G
(K ,⇢)

.

We can now introduce Theorem 34, that can be regarded as a version of Theorem 23 for MC.

13

Input: a Kripke structure K = (AP ,W,E, µ, s0), a D|Hom

-formula '

1. Put M |W | · 23|'|2
, step 0 and (s, row) (s0, A) for some atom A 2 A

'

with

Req

D

(A) = ; and A \ AP = µ(s0).

2. If ' 62 row[|row|� 1], return yes.

3. If step = M � 1, return no.

4. Non-deterministically choose s

0
such that (s, s0) 2 E.

5. Non-det. generate a '-row row

0
and check that row

0[0] \ AP = µ(s0) and row

row'
row

0
.

6. Put step step+ 1 and (s, row) (s0, row0).

7. Go back to 2.

Figure 6: Non-deterministic procedure deciding the existence of initial traces ⇢ such that K , ⇢ 6|= '

Theorem 34. Given a Kripke structure K = (AP ,W,E, µ, s
0

) and a D|Hom

-formula ', there

exists an initial trace ⇢ of K such that K , ⇢ |= ' iff there exists a path in G
'⇠K = (�,⌅) from

some node (s
0

, [row]⇠) 2 � to some node (s, [row0
]⇠) 2 � such that: (1) there is row

1

2 [row]⇠
with |row

1

| = 1, and (2) there is row
2

2 [row0
]⇠ with ' 2 row

2

[|row
2

|� 1].

Proof. Preliminarily we observe that, in (1), if |row
1

| = 1, then {row
1

} = [row]⇠; moreover, in
(2), if for row

2

2 [row0
]⇠ we have ' 2 row

2

[|row
2

| � 1], then for any row0
2

2 [row0
]⇠ we have

' 2 row0
2

[|row0
2

|� 1].
()) Let us consider an initial trace ⇢ such that K , ⇢ |= ', hence, by Proposition 33, ' 2

L(0, |⇢|� 1) in the fulfilling homogeneous compass '-structure induced by ⇢, G
(K ,⇢)

= (PS,L). By
Lemmata 15 and 17, L(0, 0) row' row

1

row' · · · row' row|⇢|�1

, and ' 2 row|⇢|�1

[|⇢|�1]. By
definition of (' ⇠ K)-graph, (⇢(0), [L(0, 0)]⇠) ⌅! (⇢(1), [row

1

]⇠)
⌅! · · · ⌅! (⇢(|⇢|� 1), [row|⇢|�1

]⇠)
is a path in G

(K ,⇢)

—since row
y

[0] \ AP = µ(⇢(y)) for all 0 y < |⇢|—satisfying requirements (1)

and (2).
(() Let us assume there is a path (s

0

, [row
0

]⇠)
⌅! (s

1

, [row
1

]⇠)
⌅! · · · ⌅! (s

m

, [row
m

]⇠)
in the (' ⇠ K)-graph G

'⇠K = (�,⌅), satisfying (1) and (2). Hence, by definition of (' ⇠
K)-graph, ⇢ = s

0

s
1

· · · s
m

is an (initial) trace of K , [row
0

]⇠ row' · · · row'
[row

m

]⇠, and
µ(s

y

) = row
y

[0] \ AP for all 0 y m. By applying repeatedly Lemma 21 we get that
there exists a sequence row0

0

row' · · · row' row0
m

of '-rows where row0
0

= row
0

, for every
0 j m, row0

j

2 [row
j

]⇠, and ' 2 row0
m

[|row0
m

| � 1]. We observe that, by Definition 16,
|row0

j

| = |row0
j�1

|+ 1 for 1 j m and, since |row0
0

| = 1, we have |row0
j

| = j + 1. Let us now
define G = (PS,L) where S = {0, . . . ,m} and L(x, y) = row0

y

[y � x] for every 0 x y m.
Note that Req

D

(L(y, y)) = ; for every 0 y m (by definition of '-row). By Lemma 17, G
is a fulfilling homogeneous compass '-structure. Since µ(s

y

) = row
y

[0] \ AP(= L(y, y) \ AP)
for all 0 y m, then G is precisely the compass '-structure induced by ⇢. Finally, since
' 2 row0

m

[m] = L(0,m), by Proposition 33 we can conclude that K , ⇢ |= '.

Now, analogously to the case of satisfiability, we can perform a reachability in G
'⇠K , exploiting

the previous theorem to decide whether there is an initial trace ⇢ of K such that K , ⇢ |= ¬', for
a D|Hom

-formula ' (i.e., the complementary problem of MC K |= '). The non-deterministic

procedure of Figure 6 searches for a suitable path in G
'⇠K , (s

0

, [row
0

]⇠)
⌅! · · · ⌅! (s

m

, [row
m

]⇠),
where row

0

= A 2 A
'

with Req
D

(A) = ;, A \ AP = µ(s
0

), m < M , and ¬' 2 row
m

[|row
m

|� 1]

(i.e., ' 62 row
m

[|row
m

|�1]). At the j-th iteration of lines 4./5., (s
j�1

, s
j

) 2 E is selected, and row
j

is non-deterministically generated checking that row
j

[0] \ AP = µ(s
j

) and row
j�1

row' row
j

.

14

Basically, the same observations about the working space of the procedure in Figure 4 can be
done also for this algorithm, except for the space used to encode in binary M |W | · 23|'|2 and
step, ranging in [0,M � 1], which is O(log |W |+ |'|2) bits. Moreover we need to store two states,
s and s0 of K , that need O(log |W |) bits to be represented.

Theorem 35. The MC problem for D|Hom

-formulas over finite Kripke structures is PSPACE-

complete. Moreover, for constant-length formulas, it is NLOGSPACE-complete.

Proof. Membership is immediate by the previous space analysis, and the fact that the complexity
classes NPSPACE = PSPACE and NLOGSPACE are closed under complement.

As for the PSPACE-hardness, we make a reduction from the PSPACE-complete problem

of universality of the language of an NFA [HK11]. The full proof is in Appendix A.2. For the
NLOGSPACE-hardness, there exists a trivial reduction from the problem of (non-)reachability

of two nodes in a directed graph.

Finally, it is possible to adapt the procedure also for strict D|Hom

(using Definitions 25–27).

5 Conclusions

In this paper, we have shown that both satisfiability and model checking for the logic D of
sub-intervals—over finite linear orders and finite Kripke structures, respectively—are PSPACE-
complete, under the homogeneity assumption. We are investigating the possibility of generalizing
the given procedures to cope with the logic BE: nothing is known about its satisfiability, while a
large gap separates known upper and lower bounds for model checking.

Acknowledgements The work by Alberto Molinari, Angelo Montanari, and Pietro Sala has
been supported by the GNCS project Logic and Automata for Interval Model Checking.

We sincerely thank an anonymous reviewer for his/her thorough review and valuable comments,
which significantly contributed to improving the quality of the publication—in particular for
spotting a problem with the hardness proof of satisfiability in the submitted paper, and suggesting
a possible solution.

15

References

[All83] J. F. Allen. Maintaining knowledge about temporal intervals. Communications of

the ACM, 26(11):832–843, 1983.

[BGMS09] D. Bresolin, V. Goranko, A. Montanari, and G. Sciavicco. Propositional interval
neighborhood logics: Expressiveness, decidability, and undecidable extensions. Annals

of Pure and Applied Logic, 161(3):289–304, 2009.

[BGMS10] D. Bresolin, V. Goranko, A. Montanari, and P. Sala. Tableaux for logics of subinterval
structures over dense orderings. Journal of Logic and Computation, 20(1):133–166,
2010.

[BMM+16] L. Bozzelli, A. Molinari, A. Montanari, A. Peron, and P. Sala. Interval temporal logic
model checking: The border between good and bad HS fragments. In Proceedings of

the 8th International Joint Conference (IJCAR), pages 389–405, 2016.

[DGMS11] D. Della Monica, V. Goranko, A. Montanari, and G. Sciavicco. Interval temporal
logics: a journey. Bulletin of the EATCS, 105:73–99, 2011.

[HK11] M. Holzer and M. Kutrib. Descriptional and computational complexity of finite
automata—a survey. Information and Computation, 209(3):456 – 470, 2011.

[HS91] J. Y. Halpern and Y. Shoham. A propositional modal logic of time intervals. Journal

of the ACM, 38:279–292, 1991.

[KR93] H. Kamp and U. Reyle. From Discourse to Logic: Introduction to Model-theoretic

Semantics of Natural Language, Formal Logic and Discourse Representation Theory,

Volume 42 of Studies in Linguistics and Philosophy. Springer, 1993.

[Lod00] K. Lodaya. Sharpening the undecidability of interval temporal logic. In Proceedings

of the 6th Asian Computing Science Conference (ASIAN), pages 290–298, 2000.

[MM14] J. Marcinkowski and J. Michaliszyn. The undecidability of the logic of subintervals.
Fundamenta Informaticae, 131(2):217–240, 2014.

[MMM+16] A. Molinari, A. Montanari, A. Murano, G. Perelli, and A. Peron. Checking interval
properties of computations. Acta Informatica, 53(6-8):587–619, 2016.

[Mon16] A. Montanari. Interval temporal logics model checking. In Proceedings of the

23rd International Symposium on Temporal Representation and Reasoning, (TIME),
page 2, 2016.

[MPS10] A. Montanari, I. Pratt-Hartmann, and P. Sala. Decidability of the logics of the reflex-
ive sub-interval and super-interval relations over finite linear orders. In Proceedings

of the 17th International Symposium on Temporal Representation and Reasoning

(TIME), pages 27–34, 2010.

[Ott01] M. Otto. Two variable first-order logic over ordered domains. Journal of Symbolic

Logic, 66(2):685–702, 2001.

[Sha04] I. Shapirovsky. On PSPACE-decidability in transitive modal logic. In Proceedings of

the 5th conference on Advances in Modal logic (AiML), pages 269–287, 2004.

16

[Ven90] Y. Venema. Expressiveness and completeness of an interval tense logic. Notre Dame

Journal of Formal Logic, 31(4):529–547, 1990.

[Ven91] Y. Venema. A modal logic for chopping intervals. Journal of Logic and Computation,
1(4):453–476, 1991.

17

A Appendix

A.1 Proof of Lemma 21
Before we begin the proof, we introduce some extra notation and terminology. Given a '-row
row we denote by row[i . . . j], for 0 i j < |row|, the sub-word row[i]row[i + 1] · · · row[j].
Clearly any sub-word row[0 . . . i] is a '-row, for every 0 i < |row|; moreover, if row row' row,
then row[0 . . . i] row' row[0 . . . i+ 1]. Given a '-row row = Am0

0

· · ·Amn
n

, for every '-atom A
i

we say that A
i

exceeds its rank in row if m
i

> rank(A
i

). Finally we define a total order “<” on
atoms A

0

, . . . , A
n

determined by the position they have in row (i.e., A
0

< . . . < A
n

). Note that
“<” can be extended to (atoms of) pairs of '-rows related by ⇠.

We repeat the statement of Lemma 21 for convenience.

Lemma 21. Given two '-row classes [row
1

]⇠ and [row
2

]⇠ such that [row
1

]⇠ row'
[row

2

]⇠, for

every row 2 [row
1

]⇠ there exists row0 2 [row
2

]⇠ such that row row' row0.

Proof. Since [row
1

]⇠ row'
[row

2

]⇠, there exists row 2 [row
1

]⇠ and row 2 [row
2

]⇠ such that
row row' row. If |[row

1

]⇠| = 1 the thesis follows. Let us now suppose |[row
1

]⇠| � 2; then
there exists row0 6= row such that row0 ⇠ row. Let row = Am0

0

· · ·Amn
n

; by Definition, row0
=

A
m

0
0

0

· · ·Am

0
n

n

, where for every 0 i n, m0
i

= m
i

if m
i

 rank(A
i

), and m0
i

> rank(A
i

) if
m

i

> rank(A
i

). Let row = A
m0

0

· · ·Amn

n

. The following algorithm generates row0
= A

m

0
0

0

· · ·Am

0
n

n

such that row0
row' row0 and row0 ⇠ row.

Algorithm A.1: BuildSuccessor(row, row, row0)

i j 0

row0
[0] row[0]

exit false
while ¬exit8
>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>:

if row[i] = row0
[j]

then

8
>>>>>><

>>>>>>:

row0
[j + 1] row[i+ 1]

if i < |row|� 1

then i i+ 1

if j < |row|� 1

then j j + 1

else exit true

else

8
>><

>>:

if row[i] > row0
[j]

then
⇢
row0

[j + 1] row[i]
j j + 1

else i i+ 1 //(row[i] < row0
[j])

return row0

In order to prove that the returned '-row row0 satisfies the desired properties, we use the
following invariant conditions, and show that they hold for every iteration of the while loop in
the procedure:

(A) row0
[0 . . . j � 1]

row' row0;

(B) row0 ⇠ row[0 . . . i]
(note that in different iterations row0 and row[0 . . . i] may change equivalence class);

18

(C) if row[i] > row0
[j] then row[0 . . . i � 1] ⇠ row0

[0 . . . j] and the exponent of the atom
row0

[j] = row[i� 1] in row0
[0 . . . j] is greater than rank(row[i� 1]) = rank(row0

[j]);

(D) if row[i] < row0
[j] then row[0 . . . i] ⇠ row0

[0 . . . j � 1] and the exponent of the atom
row[i] = row0

[j � 1] in row[0 . . . i] is greater than rank(row0
[j � 1]) = rank(row[i]);

(E) if row[i] = row0
[j] then row[0 . . . i] ⇠ row0

[0 . . . j] and the two exponents of atoms row[i] in
row[0 . . . i] and row0

[0 . . . j] are equal;

(G) if row[i] < row0
[j] then row[i] = row[i� 1].

Let us prove that the invariant conditions hold immediately before the execution of the while
loop (i.e., before the first iteration of the while has taken place). Condition (A) trivially holds
because row0

[0 . . . j � 1] is the empty word, which is a predecessor of row0 consisting of a single
atom; moreover condition (E) is verified since row[0 . . . i� 1] is also the empty word. Condition
(B) is verified because row0

= row[0]. Conditions (C), (D) and (G) are vacuously verified because
i = j = 0 and row0

[j] = row[i].
Let us now assume that, at the beginning of a generic iteration, the conditions (A)–(G) hold,

and we prove that they hold after such iteration as well. The following cases may arise.

• row[i] = row0
[j]. Then the algorithm puts row0

[j+1] = row[i+1]. Since row0 ⇠ row[0 . . . i]
by (B), we have that row0

[j] = row[i] (because j is the last position of row0). Then, since
row row' row, we have row[i]row[i] D' row[i+1] and thus row0

[j]row0
[j] D' row0

[j+
1], and since row0

[0 . . . j � 1]

row' row0
[0 . . . j] by (A), we have row0

[0 . . . j] row' row0:
condition (A) is satisfied.
Let us consider condition (B). If row[i+ 1] 6= row[i] then the condition is trivially satisfied.
Let us now consider the case row[i + 1] = row[i]: by invariant condition (B) we have
row0

[0 . . . j] ⇠ row[0 . . . i] and thus the exponents m and m0 of the atoms row[i] and
row0

[j] in row[1 . . . i] and row[1 . . . j] satisfy either m = m0 or m,m0 > rank(row[i]). Since
row[i + 1] = row[i] then row0

[j + 1] = row0
[j] and thus the invariant condition (B) is

satisfied for row0 and row[0 . . . i+ 1].
Let us consider the conditions (C), (D), (E) and (G). Conditions (C), (D) and (G) hold
trivially at the beginning of the current iteration since their preconditions are not satisfied,
but one of them may hold non-trivially after the increment of indexes. In the case we are
considering (row[i] = row0

[j]) the following possibilities are given in the increment of i and
j:

– i = |row| � 1. Then, since row[i] = row0
[j], we have row[i] = row0

[j] = A
n

: two
cases may arise. If m

n

= m0
n

 rank(A
n

), by invariant condition (E) we have
row[0 . . . i] ⇠ row0

[0 . . . j] and thus j = |row0|�1. At this point the procedure puts exit
to true without incrementing neither i nor j and the invariant condition (E) is respected
(invariant conditions (C), (D) and (G) are trivially respected because row[i] = row0

[j]).
Conversely, if m

n

,m0
n

> rank(A
n

) then, since invariant condition (E) holds, we have
that row[0 . . . i] ⇠ row0

[0 . . . j]; this means that the exponent m00
n

of A
n

in row0
[0 . . . j]

satisfies rank(A
n

) < m00
n

 m0
n

.1 If m00
n

= m0
n

the procedure terminates like in the
previous case. If m00

n

< m0
n

, only j is incremented by 1, and the new exponent of A
n

in row0
[0 . . . j + 1] is m00

n

+ 1 > rank(A
n

). We have row0
[0 . . . j + 1] ⇠ row[0 . . . i] and

thus the invariant condition (E) is respected (invariant conditions (C), (D) and (G)
are trivially respected because row[i] = row0

[j + 1] = A
n

).
1
Note: m

00
n

is the exponent of A

n

in row

0[0 . . . j], whereas m

0
n

is the exponent of A

n

in row

0
.

19

– i < |row|� 1. Then there exists the atom row[0 . . . i+ 1]. Two cases may arise: either
row0

[j+1] exists or it does not. In the latter case j = |row0|�1 and row[i] = row0
[j] =

A
n

. Since row[0 . . . i] ⇠ row0
[0 . . . j], it cannot be the case that m

n

,m0
n

 rank(A
n

)

because we will have that m0
n

 rank(A
n

) and m0
n

< m
n

 rank(A
n

), violating
row ⇠ row0. Thus m

n

,m0
n

> rank(A
n

). Since m0
n

is the exponent of A
n

in row0
[0 . . . j]

(row0
[0 . . . j] = row0) by invariant condition (E) we have that the exponent m00

n

of A
n

in row[0 . . . i] satisfies rank(A
n

) < m00
n

< m
n

and thus the exponent m00
n

+ 1 of A
n

in row[0 . . . i+ 1] satisfies the same condition. Since in such situation the procedure
increments only i and we just proved row[0 . . . i+ 1] ⇠ row0

[0 . . . j], then invariant (E)
is preserved (invariant conditions (C), (D) and (G) are trivially respected because
row[i] = row0

[j + 1] = A
n

).
Let us consider now the case in which j < |row0| � 1, and row0

[j + 1] exists. Three
cases may arise:
⇤ row0

[j + 1] = row[i+ 1]. Condition (E) is satisfied, and the premises of conditions
(C), (D) and (G) are not fulfilled, hence they vacuously hold;
⇤ row0

[j+1] > row[i+1]. Condition (D) is satisfied (we can reason as we did before
for (E)) since row0

[j + 1] is the first occurrence on row0 of the atom row0
[j + 1],

while row[i + 1] = row[i] because row0 and row feature the same atom. Hence
also (G) is satisfied. The premises of both invariants (C) and (E) are not fulfilled,
hence they vacuously hold;

⇤ row0
[j+1] < row[i+1]. Condition (C) is satisfied (we can reason as we did before

for (E)) since row[i+1] is the first occurrence on row of the atom row[i+1], while
row0

[j + 1] = row0
[j] because row0 and row feature the same atom. The premises

of conditions (D), (E) and (G) are not fulfilled, hence they vacuously hold.

• row[i] > row0
[j]. Then the algorithm puts row0

[j + 1] = row[i]. Let us prove that
invariant condition (A) still holds for the updated row0. By condition (C), row[0 . . . i �
1] ⇠ row0

[0 . . . j] and the exponent of row[i � 1] = row0
[j] in row0

[0 . . . j] is greater than
rank(row[i� 1]). Since the exponent of row[i� 1] in row[0 . . . i] is equal to the exponent
of row[i � 1] in row and it is greater than rank(row[i � 1]) (as row ⇠ row0), then,
by Lemma 18, there exists k such that row[i � 1 � k]row[i � 1 � k] D' row[i � k] with
row[i�1�k] = row[i�1] and row[i�k] = row[i�1�k], thus row[i�1�k] = . . . = row[i�1]
and row[i � k] = row[i � k � 1] = . . . = row[i] (recall that row D' row). By condition
(B), row0

[0 . . . j] ⇠ row[0 . . . i], thus row0
[j] = row[i]. Since row0

[j] = row[i � 1] we have
that row0

[j]row0
[j] D' row[i](= row0

[j + 1]) and thus condition (A) is verified.
As for condition (B), first we prove that row[i] exceeds its rank in row. Since, by condition
(C), row[i� 1] exceeds its rank in row0, and since row0 ⇠ row, row[i� 1] exceeds its rank
also in row. By Lemma 18, row[i] exceeds its rank in row. By condition (B) we have
row0

[0 . . . i] ⇠ row0
[0 . . . j]. Then the number of atoms row0

[j] in row0
[0 . . . j] exceeds its

rank and thus, since row[i] = row0
[j] = row0

[j + 1], condition (B) is respected for row0.
Now we consider the increment of j. Since we started from row[i] > row0

[j], then row0
[j+1]

exists, as row ⇠ row0; we may have two cases:

– row[i] = row0
[j + 1]. Then condition (E) is satisfied, as previously row[0 . . . i� 1] ⇠

row0
[0 . . . j]. Now there exists exactly one atom row[i] in both. Conditions (C), (D),

(G) trivially hold since their premises are not fulfilled;
– row[i] > row0

[j+1]. Since, by (C), row[0 . . . i�1] ⇠ row0
[0 . . . j] we have row0

[j+1] =

row0
[j] = row[i� 1] and thus, previously, the exponent of row0

[j] exceeded its rank

20

in row0
[0 . . . j] (by (C)). Now, row0

[j + 1] exceeds its rank in row0
[0 . . . j + 1], hence

condition (C) is satisfied. Invariant conditions (D), (E), (G) trivially hold since their
premises are not fulfilled.

• row[i] < row0
[j]. Then the algorithm just updates i to i+1. Condition (A) still holds since

the value of j does not change.
Let us consider condition (B). First we prove that row0

[j] exceeds its rank in row0
[0 . . . j]: by

condition (D), row[i] exceeds its rank in row[0 . . . i], and since row[0 . . . i] ⇠ row0
[0 . . . j�1],

we have that row0
[j � 1] exceeds its rank in row0

[0 . . . j � 1]; by Lemma 18 (recall that
row0

[0 . . . j � 1]

row' row0) row0
[j] exceeds its rank in row0

[0 . . . j]. Now we reason as
follows. Since row[i] exceeds its rank in row[0 . . . i], by Lemma 18, row[i+ 1] exceeds its
rank in row[0 . . . i+ 1]. Moreover we already know, by (B), that row[0 . . . i] ⇠ row0

[0 . . . j],
then row[i] exceeds its rank in row[0 . . . i]. Now, if row[i+ 1] = row[i], we conclude that
row[0 . . . i + 1] ⇠ row0, and thus condition (B) holds. To conclude we show that, in any
case, if row[i+ 1] > row[i], we get a contradiction.
Let us assume that row[i+1] > row[i], hence row[i+1] occurs just once in row[0 . . . i+1], thus
its rank is 0, and it must be reflexive. If row[i] is irreflexive, its rank must be at least 1, hence
it occurs at least two times (exceeding its rank in row[0 . . . i]), and this is not possible. Thus
row[i] is reflexive, hence Obs

D

(row[i]) ✓ Req
D

(row[i]). Moreover, by definition of D' ,
we have Req

D

(row[i+1]) = Req
D

(row[i])[Obs
D

(row[i])[Req
D

(row[i])[Obs
D

(row[i]) =
Req

D

(row[i])[Req
D

(row[i])[Obs
D

(row[i]). As for row[i], Req
D

(row[i]) = Req
D

(row[i�
1]) [Obs

D

(row[i� 1]) [Req
D

(row[i� 1]) [Obs
D

(row[i� 1]). However, by (G) row[i] =
row[i�1], hence Req

D

(row[i+1]) = Req
D

(row[i�1])[Obs
D

(row[i�1])[Req
D

(row[i�1])[
Obs

D

(row[i�1]), which equals Req
D

(row[i]). Finally row[i]\AP = row[i�1]\row[i�1]\AP
and row[i+1]\AP = row[i]\row[i]\AP = row[i�1]\row[i�1]\AP . Thus, by Proposition 4,
row[i] = row[i+ 1], contradicting row[i+ 1] > row[i].
As for conditions (C)–(G) we have two possible cases (it cannot be that row[i+1] > row0

[j]
because we started from row[i] < row0

[j]):

– row[i+ 1] = row0
[j]. Condition (E) is satisfied since previously, by (D), row[0 . . . i] ⇠

row0
[0 . . . j � 1], and now there exists exactly one atom row[i+ 1] in both. Conditions

(C), (D), (G) trivially hold since their premises are not fulfilled;
– row[i+ 1] < row0

[j]. Since by (D) row[0 . . . i] ⇠ row0
[0 . . . j � 1], we have row[i+ 1] =

row[i] = row0
[j � 1] and thus, previously, the exponent of row[i] exceeded its rank (D)

in row[0 . . . i]; now row[i+ 1] exceeds its rank in row[0 . . . i+ 1]. Thus invariant (D) is
satisfied. Condition (G) is fulfilled as well. Conditions (E) and (C) trivially hold since
their premises are not fulfilled.

At the end of the above procedure, the generated '-row row0 satisfies the desired properties,
by invariant conditions (A) and (B).

A.2 Hardness of MC for D|Hom

over finite Kripke structures
In this section we prove the PSPACE-hardness of MC for D|Hom

over finite Kripke structures by
means of a reduction from the PSPACE-complete problem of (non-)universality of the language
of a non-deterministic finite automaton [HK11]. We start by recalling some standard concepts.

A non-deterministic finite automaton (NFA) is a tuple N = (⌃, Q, q
1

, �, F), where ⌃ is a finite
alphabet, Q is a finite set of states, q

1

2 Q is the initial state, � : Q⇥ ⌃! 2

Q is the transition
function, and F ✓ Q is the set of accepting states. Given a finite word w over ⌃, with |w| = n, a

21

computation of N over w is a finite sequence of states q0
1

, . . . , q0
n+1

such that q0
1

= q
1

, and for all
i 2 [0, n� 1], q0

i+2

2 �(q0
i+1

, w(i)). The language L(N) accepted by N consists of the finite words
w over ⌃ such that there is a computation over w ending in some accepting state.

A deterministic finite automaton (DFA) is an NFA ˜N = (⌃, ˜Q, q̃
1

, ˜�, ˜F) such that for all
(q, c) 2 ˜Q⇥ ⌃, ˜�(q, c) is a singleton. It is well-known that, by a subset construction, we can build
a DFA ˜N from an NFA N such that L(˜N) = L(N) and ˜Q = 2

Q.
The problem of deciding whether L(N) 6= ; for an NFA N can be solved by logarithmic working

space by means of a non deterministic reachability from the initial state of N to an accepting
state. On the other hand, deciding if L(N) 6= ⌃

⇤ (namely, deciding if L(N) is non-universal,
i.e., there is some w 2 ⌃⇤ such that w /2 L(N)) is more difficult, and it is PSPACE-complete
[HK11]. This is due to the fact that the shortest word not accepted by an NFA can have length
exponential in the number of states of the NFA.

In order to decide if a word w is accepted by an NFA N , it is possible to build “on the fly”
the computation of ˜N (the DFA obtained by the aforementioned subset construction from N ,
where L(˜N) = L(N)) over w.

q
1start q

2

q
3

a

a

c

b

a

b

Figure 7: An example of NFA, where q
1

is the initial state, and q
3

the only final state.

For example, let us consider the NFA N of Figure 7. The computation of ˜N (the equivalent
DFA) over aab is:

(Q
1

= {q
1

}) a! (Q
2

= {q
1

, q
2

}) a! (Q
3

= {q
1

, q
2

, q
3

}) b! (Q
4

= {q
1

, q
3

}). (1)

The word aab is accepted since there exists a final state of N , q
3

2 Q
4

(Q
4

is the state of ˜N
reached by the computation). Note that Q

1

is the initial state of ˜N . The computation of ˜N over
aac is:

(Q
1

= {q
1

}) a! (Q
2

= {q
1

, q
2

}) a! (Q
3

= {q
1

, q
2

, q
3

}) c! (Q0
4

= {q
2

}), (2)

hence aac is not accepted since Q0
4

does not contain final states of N .
Note that, as a rule, in the computation of ˜N over w, with |w| = n,

Q
1

w(0)! Q
2

w(1)! · · · w(n�2)! Q
n

w(n�1)! Q
n+1

,

we have that the N ’s state q 2 Q
i

, for 0 i n, iff there exists some computation of N over w,

q
1

w(0)! q
2

w(1)! · · · w(n�2)! q
n

w(n�1)! q
n+1

,

where q = q
i

. Moreover, if some q 2 Q
i

then all q0 2 �(q, w(i � 1)) must be in Q
i+1

(we recall
that � is the transition function of the NFA N). Conversely, if some q0 2 Q

i+1

then it has to exist
some q 2 Q

i

such that q0 2 �(q, w(i� 1)).
We are now ready to reduce the PSPACE-complete problem of (non-)universality of the

language of an NFA to the MC problem for D|Hom

over finite Kripke structures, proving that the
latter is PSPACE-hard.

22

Given an NFA N = (⌃, Q, q
1

, �, F), we build the Kripke structure KN = (AP ,W,E, µ, s
0

),
where:

• W = {q>
i

, q?
i

, q0>
i

, q0?
i

| i = 1, . . . , |Q|} [{x
1

, x
2

, v
1

, v
2

, v0
1

, v0
2

, bq
1

>, bq
2

?, . . . ,dq|Q|
?} [⌃;

• s
0

= v0
1

;

• AP = {q
i

, q0
i

| i = 1, . . . , |Q|} [⌃ [{e
1

, e
2

, f
1

, f
2

};

• µ(q
i

>
) = µ(q0

i

>
) = AP , µ(q

i

?
) = AP \ {q

i

}, µ(q0
i

?
) = AP \ {q0

i

}, for 1 i |Q|;
µ(a) = AP \ (⌃ \ {a}) for a 2 ⌃;
µ(x

1

) = AP \{e
1

}, µ(x
2

) = AP \{e
2

}, µ(v
1

) = µ(v0
1

) = AP \{f
1

}, µ(v
2

) = µ(v0
2

) = AP \{f
2

},
and finally µ(bq

1

>
) = AP , µ(bq

2

?
) = AP \ {q

2

},. . . , µ(dq|Q|
?
) = AP \ {q|Q|}.

The edges E of KN can easily be deduced from Figure 8, which is an example of Kripke
structure built for an NFA with set of states Q = {q

1

, q
2

, q
3

}, and alphabet ⌃ = {a, b, c}.

q>
1

q?
1

q>
2

q?
2

q>
3

q?
3

b

a

c

x
1

x
2

q0>
1

q0?
1

q0?
2

q0>
2

q0>
3

q0?
3

v
1

v
2

bq
3

?bq
2

?bq
1

>v0
2

v0
1

Q
⌃

Q0

Figure 8: The Kripke structure KN built for an NFA with set of states Q = {q
1

, q
2

, q
3

} and
alphabet ⌃ = {a, b, c}

The idea is that the computation of ˜N on a word, say aab, which we have already seen in
Equation 1, should be represented by the following initial trace of KN :

v0
1

v0
2

(bq
1

> bq
2

? bq
3

?
)| {z }

Q1

ax
1

x
2

(q0
1

>
q0
2

>
q0
3

?
)| {z }

Q

0
2

· · ·

v
1

v
2

(q
1

>q
2

>q
3

?
)| {z }

Q2

ax
1

x
2

(q0
1

>
q0
2

>
q0
3

>
)| {z }

Q

0
3

· · ·

v
1

v
2

(q
1

>q
2

>q
3

>
)| {z }

Q3

bx
1

x
2

(q0
1

>
q0
2

?
q0
3

>
)| {z }

Q

0
4

· · ·

v
1

v
2

(q
1

>q
2

?q
3

>
)| {z }

Q4

.

(3)

The states v
1

, v0
1

, v
2

, v0
2

, x
1

, x
2

are there only for technical reasons (explained later). A triple
of states (q

1

⇤q
2

⇤q
3

⇤
) denoted by Q

i

, where ⇤ stands for > or ?, represents a state of ˜N , reached
at the (i� 1)-th step of the computation before reading w(i� 1): we have q

j

> if q
j

2 Q
i

, and
q
j

? if q
j

62 Q
i

. Moreover the subtraces denoted by Q
i

and Q0
i

must be copies (i.e., q
j

> 2 Q
i

iff

23

q0
j

> 2 Q0
i

). In between Q
i

and Q0
i+1

in the trace we have w(i� 1) 2 ⌃. The states bq
1

>, bq
2

? and
bq
3

? of KN are just “copies” of q
1

>, q
2

? and q
3

? respectively, added to ensure that the first state
of the DFA ˜N is Q

1

= {q
1

} (represented by bq
1

> bq
2

? bq
3

?). Finally note that there is an intuitive
match between subtraces and proposition letters satisfied. For example,

KN , v
1

v
2

(q
1

>q
2

>q
3

>
)bx

1

x
2

(q0
1

>
q0
2

?
q0
3

>
) |= (q

1

^ q
2

^ q
3

) ^ (q0
1

^ ¬q0
2

^ q0
3

) ^ (¬a ^ b ^ ¬c).

Let us now come to the formula �N , built from N . We assume the strict semantic variant
of D|Hom

. Preliminarily, we define the following formulas, which exploit the auxiliary states
v
1

, v0
1

, v
2

, v0
2

, x
1

, x
2

in order to “select” some suitable traces:

'
trans

= ¬f
1

^ ¬f
2

^ [D](f
1

^ f
2

) ^ hDi>,

'
copy

= ¬e
2

^ ¬e
1

^ [D](e
1

^ e
2

) ^ hDi>.
We can prove that:

• KN , ⇢ |= '
trans

iff ⇢ = ṽ
2

· · · v
1

and v
1

, v
2

do not occur as internal states of ⇢ (where ṽ
2

can
be either v

2

or v0
2

);

• KN , ⇢ |= '
copy

iff ⇢ = x
2

· · ·x
1

and x
1

, x
2

do not occur as internal states of ⇢.

Moreover the following formulas have an intuitive meaning (in particular length�3

is satisfied
by a trace ⇢ iff |⇢| � 3):

'
reject

=

^

qi2F

¬q
i

,

length�3

= hDi>.
The formula �N is defined as follows (for the sake of brevity, for q

i

, q
j

2 Q and c 2 ⌃ we
denote q

j

2 �(q
i

, c) as (q
i

, c, q
j

) 2 �).

�N := [D]

⇣
'
trans

!
⇣� ^

(qi,a,q
0
j)2�

((q
i

^ a)! q0
j

)

�
^
� ^

q

0
i2Q

(q0
i

!
_

(qj ,a,q
0
i)2�

(q
j

^ a))
�⌘⌘

| {z }
(1)

^

[D]

�
'
copy

!
^

qi2Q

(q
i

$ q0
i

)

�

| {z }
(2)

^
⇣
(e

1

^ length�3

^ '
reject

) _ hDi
⇣
'
copy

^ '
reject

⌘⌘

| {z }
(3)

Let us now prove the following lemma.

Lemma 36. L(N) 6= ⌃⇤
iff there exists an initial trace ⇢ of KN such that KN , ⇢ |= �N .

Proof. ()) If L(N) 6= ⌃⇤, then there is w /2 L(N). Therefore the computation of ˜N over w is
not accepting. Let us consider the initial trace ⇢ of KN encoding such a computation as explained
before (see Equation 3). We distinguish two cases:

• w = ": then we consider ⇢ = v0
1

v0
2

bq
1

> bq
2

? · · ·dq|Q|
?. No strict subtrace satisfies '

trans

or
'
copy

, hence conjuncts (1) and (2) are trivially satisfied. Moreover, since " /2 L(N), q
1

/2 F ,
and thus ⇢ models also e

1

^ length�3

^ '
reject

.

24

• w 6= "; then we consider the initial trace ⇢ of KN encoding the computation over w, w.l.o.g.
extended with some c 2 ⌃ (any symbol is fine), and finally x

1

x
2

: its generic form is
⇢ = v0

1

v0
2

bq
1

> bq
2

? · · ·dq|Q|
?
w(0)(x

1

x
2

q0
1

⇤
q0
2

⇤ · · · q0|Q|
⇤
v
1

v
2

q
1

⇤q
2

⇤ · · · q|Q|⇤c)+x1

x
2

, where ⇤ is ?

or >, and + denotes a positive number of occurrences of the string in brackets. Every strict
subtrace satisfying '

trans

models the right part of the implication in conjunct (1), which
enforces the consistency conditions of a computation. Every strict subtrace satisfying '

copy

features q0
i

> if it features q
i

>, and q0
i

? if it features q
i

?, hence satisfies
V

qi2Q

(q
i

$ q0
i

).
Finally, the last part of ⇢, x

2

q0
1

⇤
q0
2

⇤ · · · q0|Q|
⇤
v
1

v
2

q
1

⇤q
2

⇤ · · · q|Q|⇤cx1

, models '
copy

, and, since
w is not accepted, it also fulfills '

reject

.

Therefore, in both cases, there exists an initial trace ⇢ such that KN , ⇢ |= �N .
(() Let us assume there exists an initial trace ⇢ of KN such that KN , ⇢ |= �N . We distinguish

some cases, according to the structure of ⇢.

1. ⇢ = v0
1

(v0
2

)

? (? denotes 0 or 1 occurrences of the string in brackets).
This trace does not model (3), thus it cannot be the trace we are looking for.

2. ⇢ = v0
1

v0
2

bq
1

> bq
2

? · · · bq
j

? for j � 1, or ⇢ = v0
1

v0
2

bq
1

> bq
2

? · · ·dq|Q|
?
c for some c 2 ⌃.

No subtrace satisfies '
copy

, thus, by the conjunct (3), ⇢ models '
reject

. Hence q
1

/2 F , and
" is rejected by N .

3. ⇢ = v0
1

v0
2

bq
1

> bq
2

? · · ·dq|Q|
?
cx

1

(x
2

)

?

This trace does not model the conjunct (3).

4. ⇢ = v0
1

v0
2

bq
1

> bq
2

? · · ·dq|Q|
?
cx

1

x
2

q0
1

⇤
q0
2

⇤ · · · q0
j

⇤ for j � 1

This trace does not model the conjunct (3).

5. ⇢ = v0
1

v0
2

bq
1

> bq
2

? · · ·dq|Q|
?
cx

1

x
2

q0
1

⇤
q0
2

⇤ · · · q0|Q|
⇤
v
1

(v
2

)

?

This trace does not model the conjunct (3).

6. ⇢ = v0
1

v0
2

bq
1

> bq
2

? · · ·dq|Q|
?
cx

1

x
2

q0
1

⇤
q0
2

⇤ · · · q0|Q|
⇤
v
1

v
2

q
1

⇤q
2

⇤ · · · q
j

⇤

This trace does not model the conjunct (3).

7. ⇢ = v0
1

v0
2

bq
1

> bq
2

? · · ·dq|Q|
?
cx

1

x
2

q0
1

⇤
q0
2

⇤ · · · q0|Q|
⇤
v
1

v
2

q
1

⇤q
2

⇤ · · · q|Q|⇤c
This trace does not model the conjunct (3).

8. ⇢ = v0
1

v0
2

bq
1

> bq
2

? · · ·dq|Q|
?
cx

1

x
2

q0
1

⇤
q0
2

⇤ · · · q0|Q|
⇤
v
1

v
2

q
1

⇤q
2

⇤ · · · q|Q|⇤cx1

This trace does not model the conjunct (3).

9. ⇢ = v0
1

v0
2

bq
1

> bq
2

? · · ·dq|Q|
?
c(x

1

x
2

q0
1

⇤
q0
2

⇤ · · · q0|Q|
⇤
v
1

v
2

q
1

⇤q
2

⇤ · · · q|Q|⇤c)+x1

x
2

We have that, since ⇢ models the conjunct (1), all adjacent pairs of occurrences of
q
1

⇤q
2

⇤ · · · q|Q|⇤ q0
1

⇤
q0
2

⇤ · · · q0|Q|
⇤ consistently model a transition of ˜N ; moreover all adjacent

pairs of occurrences of q0
1

⇤
q0
2

⇤ · · · q0|Q|
⇤ q

1

⇤q
2

⇤ · · · q|Q|⇤ are “copies”. Put all together, a
legal computation of ˜N over some string w is encoded. Finally, by the conjunct (3), a
strict subtrace x

2

q0
1

⇤
q0
2

⇤ · · · q0|Q|
⇤
v
1

v
2

q
1

⇤q
2

⇤ · · · q|Q|⇤cx1

models '
reject

. Thus either w (if
such subtrace is the last one) or one of its prefixes (if it is not the last one) is rejected by ˜N .

10. ⇢ = v0
1

v0
2

bq
1

> bq
2

? · · ·dq|Q|
?
c(x

1

x
2

q0
1

⇤
q0
2

⇤ · · · q0|Q|
⇤
v
1

v
2

q
1

⇤q
2

⇤ · · · q|Q|⇤c)+x1

x
2

q0
1

⇤
q0
2

⇤ · · · q0
j

⇤.
In this case and in the following ones, we underline the final part of ⇢ which may be
“garbage”, namely, it may encode an illegal suffix of a computation, just because it is not

25

forced to “behave correctly” by �N . However, since the conjunct (3) is satisfied, a strict
subtrace x

2

q0
1

⇤
q0
2

⇤ · · · q0|Q|
⇤
v
1

v
2

q
1

⇤q
2

⇤ · · · q|Q|⇤cx1

models '
reject

(and this is not part of the
garbage). Thus, as before, some word w or one of its prefixes is rejected by ˜N .

11. ⇢=v0
1

v0
2

bq
1

> bq
2

?· · ·dq|Q|
?
c(x

1

x
2

q0
1

⇤
q0
2

⇤· · ·q0|Q|
⇤
v
1

v
2

q
1

⇤q
2

⇤· · ·q|Q|⇤c)+x1

x
2

q0
1

⇤
q0
2

⇤· · ·q0|Q|
⇤
v
1

.
Like the previous case.

12. ⇢=v0
1

v0
2

bq
1

> bq
2

?· · ·dq|Q|
?
c(x

1

x
2

q0
1

⇤
q0
2

⇤· · ·q0|Q|
⇤
v
1

v
2

q
1

⇤q
2

⇤· · ·q|Q|⇤c)+x1

x
2

q0
1

⇤
q0
2

⇤· · ·q0|Q|
⇤
v
1

v
2

.
Like case 9, but a prefix of w is necessarily rejected, such that ⇢ encodes the computation
of ˜N over w.

13. ⇢ = v0
1

v0
2

bq
1

> bq
2

? · · ·dq|Q|
?
c(x

1

x
2

q0
1

⇤
q0
2

⇤ · · · q0|Q|
⇤
v
1

v
2

q
1

⇤q
2

⇤ · · · q|Q|⇤c)+x1

x
2

q0
1

⇤
q0
2

⇤ · · · q0|Q|
⇤
v
1

v
2

q
1

⇤q
2

⇤ · · · q
j

⇤,
⇢ = v0

1

v0
2

bq
1

> bq
2

? · · ·dq|Q|
?
c(x

1

x
2

q0
1

⇤
q0
2

⇤ · · · q0|Q|
⇤
v
1

v
2

q
1

⇤q
2

⇤ · · · q|Q|⇤c)+x1

x
2

q0
1

⇤
q0
2

⇤ · · · q0|Q|
⇤
v
1

v
2

q
1

⇤q
2

⇤ · · · q|Q|⇤c,
⇢ = v0

1

v0
2

bq
1

> bq
2

? · · ·dq|Q|
?
c(x

1

x
2

q0
1

⇤
q0
2

⇤ · · · q0|Q|
⇤
v
1

v
2

q
1

⇤q
2

⇤ · · · q|Q|⇤c)+x1

x
2

q0
1

⇤
q0
2

⇤ · · · q0|Q|
⇤
v
1

v
2

q
1

⇤q
2

⇤ · · · q|Q|⇤cx1

.
All like case 12, just with the addition of final garbage, which is not considered, since it is
not part of a strict subtrace satisfying '

copy

.

In all possible (legal) cases, we get that some string is rejected by ˜N (and by N).

It follows that L(N) = ⌃

⇤ iff KN |= ¬�N . Since also the problem of universality of the
language of an NFA is PSPACE-complete (because PSPACE is closed under complement), and
both KN and �N can be generated in polynomial time, we have proved the following.

Theorem 37. The MC problem for D|Hom

-formulas over finite Kripke structures is PSPACE-

hard.

Finally, by slightly modifying �N , we can adapt the proof to the proper semantic variant of
D|Hom

.

A.3 Hardness of satisfiability for D|Hom

over finite linear orders
In this section we outline a PSPACE-hardness proof for the satisfiability problem for D|Hom

-
formulas over finite linear orders.

The construction mimics that of Sections 3.2 and 3.3 of [MM14], in which the authors show
that it is possible to build a formula of D which encodes accepting computations of an NFA.
More precisely the set of letters of equals the union of the alphabet of the NFA and the set of
its states (plus some auxiliary letters, to enforce the “orientation” in the linear order, something
that D is unaware of), and is satisfied by all and only the models such that the point-intervals
are labeled with an accepting computation of the NFA over the word written in its point-intervals.

The idea is then to exploit to encode the Kripke structure of the previous section, thus
getting a reduction from the problem of non-universality of the language of an NFA to the
satisfiability problem for D|Hom

. As a matter of fact, a Kripke structure can be regarded as a
trivial NFA over a unary alphabet, say {a}, such that all the states are final, as we are interested
only in the structure of traces (i.e., any word/trace is accepted under the only constraint that it
exists in the structure).

By an easy adaptation of the results of Sections 3.2 and 3.3 of [MM14] we get the following.

Proposition 38. Given a Kripke structure K = (AP ,W,E, µ, s
0

) devoid of self-loops, there exists

a D|Hom

-formula K whose set of proposition letters is AP [W [Aux—being Aux a set of

auxiliary letters—such that any finite linear order satisfying K represents an initial trace of K .

Moreover K is polynomial in the size of K .

26

Every linear order satisfying K features states of K labeling point-intervals (exactly one
state for each point). Moreover we can easily force, for each occurrence of some state s of K
along the order, the set of letters µ(s) to hold on the same position (point). The structure K in
Proposition 38 must not feature self-loops for a technical reason: by fulfilling this requirement,
there is no way for a state of K to “span” (by homogeneity) more than one point in a linear order
satisfying K . We observe that in [MM14] the authors do not assume homogeneity; however
homogeneity does not cause problems in our construction, as, intuitively, all the significant
properties stated by K are related to point-intervals.

Let us observe that the Kripke structure of the previous section does not contain self-loops.
By Lemma 36, the language of an NFA N is non-universal iff there exists an initial trace ⇢ such
that KN , ⇢ |= �N (the Kripke structure and formula built from N in the previous section), iff (by
Proposition 38 applied to KN) the formula KN ^ �N is satisfiable. We have proved the next
theorem.

Theorem 39. The satisfiability problem for D|Hom

-formulas over finite linear orders is PSPACE-

hard.

27

	Introduction
	The logic D of the sub-interval relation
	A spatial representation of interval models

	Satisfiability of D|Hom over finite linear orders
	Model checking for D|Hom over Kripke structures
	Conclusions
	Appendix
	Proof of Lemma 21
	Hardness of MC for D|Hom over finite Kripke structures
	Hardness of satisfiability for D|Hom over finite linear orders

