
University of Udine

Department of Mathematics and Computer Science

PREPRINT

Interval vs. Point Temporal Logic Model Checking: an
Expressiveness Comparison

Laura Bozzelli, Alberto Molinari, Angelo Montanari, Adriano Peron, and Pietro Sala

Preprint nr.: 3/2016

Reports available from: https://www.dimi.uniud.it/preprints/

Interval vs. Point Temporal Logic Model
Checking: an Expressiveness Comparison
Laura Bozzelli

1
, Alberto Molinari

2
, Angelo Montanari

2
, Adriano

Peron

3
, and Pietro Sala

4

1 Technical University of Madrid (UPM), Madrid, Spain

2 University of Udine, Udine, Italy

3 University of Napoli “Federico II”, Napoli, Italy

4 University of Verona, Verona, Italy

Abstract
Model checking is a powerful method widely explored in formal verification to check the (state-
transition) model of a system against desired properties of its behaviour. Classically, properties
are expressed by formulas of a temporal logic, such as LTL, CTL, and CTLú. These logics are
“point-wise” interpreted, as they describe how the system evolves state-by-state. On the contrary,
Halpern and Shoham’s interval temporal logic (HS) is “interval-wise” interpreted, thus allowing
one to naturally express properties of computation stretches, spanning a sequence of states, or
properties involving temporal aggregations, which are inherently “interval-based”.

In this paper, we study the expressiveness of HS in model checking, in comparison with
that of the standard logics LTL, CTL, and CTLú. To this end, we consider HS endowed with
three semantic variants: the state-based semantics, introduced by Montanari et al., which allows
branching in the past and in the future, the linear-past semantics, allowing branching only in
the future, and the linear semantics, disallowing branching. These variants are compared, as
for their expressiveness, among themselves and to standard temporal logics, getting a complete
picture. In particular, HS with linear (resp., linear-past) semantics is proved to be equivalent to
LTL (resp., finitary CTLú).

1998 ACM Subject Classification F.4.1 Mathematical Logic, D.2.4 Software Verification

Keywords and phrases Interval Temporal Logics, Expressiveness, Model Checking

Digital Object Identifier 10.4230/LIPIcs...

1 Introduction

Point-based temporal logics (PTLs) provide a fundamental framework for the specification
of the behavior of reactive systems, that makes it possible to describe how the system
evolves state-by-state (“point-wise” view). PTLs have been successfully employed in model
checking (MC), which enables one to automatically verify complex finite-state systems usually
modelled as finite propositional Kripke structures. The MC methodology considers two
types of PTLs—linear and branching—which di�er in the underlying model of time. In
linear temporal logics, such as LTL [24], each moment in time has a unique possible future:
formulas are interpreted over paths of a Kripke structure, and thus they refer to a single
computation of the system. In branching temporal logics, such as CTL and CTLú [7], each
moment in time may evolve into several possible futures: formulas are interpreted over states
of the Kripke structure, hence referring to all the possible computations of a system.

Interval temporal logics (ITLs) have been proposed as an alternative setting for reasoning
about time [9, 23, 28]. Unlike standard PTLs, they take intervals, rather than points, as

© Laura Bozzelli, Alberto Molinari, Angelo Montanari, Adriano Peron, and Pietro Sala;

licensed under Creative Commons License CC-BY

Leibniz International Proceedings in Informatics

Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs...
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

XX:2 Interval vs. Point Temporal Logic Model Checking: an Expressiveness Comparison

their primitive entities. ITLs allow one to specify relevant temporal properties that involve,
for instance, actions with duration, accomplishments, and temporal aggregations, which are
inherently “interval-based”, and thus cannot be naturally expressed by PTLs. They have been
applied in various areas of computer science, including formal verification, computational
linguistics, planning, and multi-agent systems [14, 23, 25]. Halpern and Shoham’s modal logic
of time intervals HS [9] is the most popular among ITLs. It features one modality for each of
the 13 possible ordering relations between pairs of intervals (the so-called Allen’s relations [1]),
apart from equality. Its satisfiability problem turns out to be undecidable for all interesting
(classes of) linear orders [9]; the same happens with most of its fragments [6, 13, 17].

In this paper, we focus on the model checking problem for HS. In order to check interval
properties of computations, one needs to collect information about states into computation
stretches (i.e., finite paths of the Kripke structure, tracks for short): each track is interpreted
as an interval, whose labelling is defined on the basis of the labelling of the component states.
This approach to MC has independently and simultaneously been proposed by Montanari et
al. in [22] and by Lomuscio and Michaliszyn in [14, 15].

The semantics proposed in [22] is state-based, featuring intervals/tracks which are forgetful
of the history leading to the starting state of the interval itself. Since the starting state
(resp., ending state) of an interval may feature several predecessors (resp., successors), this
interpretation induces a branching reference in both future and past. The other relevant
choice in this approach concerns the labeling of intervals: a natural principle, known as the
homogeneity assumption, is adopted, according to which a proposition holds over an interval if
and only if it holds over each component state. Under this semantics, the MC problem for full
HS turns out to be decidable—it is EXPSPACE-hard, while the only known upper bound
is non-elementary. The exact complexity of almost all the meaningful syntactic fragments of
HS has been recently determined in a series of papers (e.g., [4, 5, 18, 19, 20, 21]).

The approach followed in [14, 15] is more expressive than the one in [22] since it relies on
the extension of HS with knowledge modalities typical of the epistemic logics, which allow
one to relate distinct paths of a Kripke structure. Additionally, the semantic assumptions
di�er from those of [22]: the logic is interpreted over the unwinding of the Kripke structure
(computation-tree-based approach), and the interval labeling takes into account only the
endpoints of the interval itself. A more expressive definition of interval labeling, obtained by
associating each proposition with a regular expression over the set of states of the Kripke
structure, was recently proposed in [16]. The decidability status of MC for full epistemic HS
is currently unknown [14, 15].

In this paper, we study the expressiveness of HS, in the context of MC, in comparison with
that of the standard PTLs LTL, CTL, and CTLú. The investigation is carried on enforcing
the homogeneity assumption. We prove that HS endowed with the state-based semantics
proposed in [22] (hereafter denoted as HSst) is not comparable with LTL, CTL, and CTLú.
On the one hand, the result supports the intuition that HSst gains some expressiveness by
the ability to branch in the past. On the other hand, HSst does not feature the possibility to
force the verification of a property over an infinite path, thus implying that the formalisms
are not comparable. With the aim of having a more “e�ective” comparison base, we
consider two semantic variants of HS, besides the state-based semantics HSst, namely, the
computation-tree-based semantics (denoted as HSlp) and the trace-based semantics (HSlin).

The state-based and computation-tree-based approaches rely on a branching-time setting
and di�er in the nature of past. In the latter approach, the past is linear: each interval
may have several possible futures, but it has a unique past. Moreover, the past is assumed
to be finite and cumulative (i.e., the history of the current situation increases with time,

L. Bozzelli, A. Molinari, A. Montanari, A. Peron, and P. Sala XX:3

and is never forgotten). The trace-based approach relies on a linear-time setting, where the
infinite paths (computations) of the given Kripke structure are the main semantic entities.
Branching is neither allowed in the past nor in the future.

HSlp

HSlin

HSst

finitary CTLú

LTL

CTL

CTLú©

©

<

”=

<

”=

”=
”=

”=

Figure 1 Overview of the expressiveness results

The variant HSlp is a natural candidate
for an expressiveness comparison with the
branching time logics CTL and CTLú. The
more interesting and technically involved
result is the characterization of HSlp, which
turns out to be expressively equivalent to
finitary CTLú, i.e., the variant of CTLú

with quantification over finite paths. As
for CTL, a non comparability result can
be stated. Conversely, HSlin is a natural
candidate for an expressiveness comparison with LTL. As a matter of fact, we prove that
HSlin and LTL are equivalent (even for a small fragment of HSlin). We complete the picture
with a comparison of the three semantic variants HSst, HSlp, and HSlin. We prove that, as
expected, HSlin is not comparable with either the branching versions, HSlp and HSst. The
interesting result is that, on the other hand, HSlp is strictly included in HSst: this supports
HSst, adopted in [18, 19, 20, 21, 4, 5], as a reasonable and adequate semantic choice. The
complete picture of the expressiveness results is reported in Figure 1 (the symbols ”=, © and
< denote incomparability, equivalence, and strict expressiveness inclusion, respectively).

The paper is structured as follows. In Section 2, we introduce some preliminary notions.
In Section 3, we prove the expressiveness results. In particular, in Section 3.1 we prove the
equivalence between LTL and HSlin; in Section 3.2 we prove the equivalence between HSlp
and finitary CTLú; finally, in Section 3.3 we compare the logics HSst, HSlp, and HSlin.

2 Preliminaries

Let (N, <) be the set of natural numbers equipped with the standard linear ordering. For all
i, j œ N, with i Æ j, [i, j] denotes the set of natural numbers h such that i Æ h Æ j.

Let � be an alphabet and w be a non-empty finite or infinite word over �. We denote
by |w| the length of w (we set |w| = Œ if w is infinite). For all i, j œ N, with i Æ j,
w(i) denotes the i-th letter of w, while w[i, j] denotes the finite subword of w given by
w(i) · · · w(j). If w is finite and |w| = n + 1, we define fst(w) = w(0) and lst(w) = w(n).
Pref(w) = {w[0, i] | 0 Æ i Æ n ≠ 1} and Su�(w) = {w[i, n] | 1 Æ i Æ n} are the sets of all
proper prefixes and su�xes of w, respectively.

2.1 Kripke structures and interval structures
I Definition 1 (Kripke structure). A Kripke structure over a finite set AP of proposition
letters is a tuple K = (AP , S, ”, µ, s

0

), where S is a set of states, ” ™ S ◊ S is a left-total
transition relation, µ : S ‘æ 2AP is a total labelling function assigning to each state s the set
of propositions that hold over it, and s

0

œ S is the initial state. For (s, sÕ) œ ”, we say that sÕ

is a successor of s, and s is a predecessor of sÕ. Finally, we say that K is finite if S is finite.

s0
p

s1
q

Figure 2 The Kripke structure K

Figure 2 depicts the finite Kripke structure K =
({p, q}, {s

0

, s
1

}, ”, µ, s
0

), where ” = {(si, sj) | i, j = 0, 1},
µ(s

0

) = {p}, and µ(s
1

) = {q}. The initial state s
0

is
marked by a double circle.

XX:4 Interval vs. Point Temporal Logic Model Checking: an Expressiveness Comparison

Let K = (AP , S, ”, µ, s
0

) be a Kripke structure. An infinite path fi of K is an infinite
word over S such that (fi(i), fi(i + 1)) œ ” for all i Ø 0. A track (or finite path) of K is a
non-empty prefix of some infinite path of K . A finite or infinite path is initial if it starts
from the initial state of K . Let TrkK be the (infinite) set of all tracks of K and Trk0

K be the
set of initial tracks of K . For a track fl, states(fl) denotes the set of states occurring in fl, i.e.,
states(fl) = {fl(0), · · · , fl(n)}, where |fl| = n + 1.

I Definition 2 (D-tree structure). For a given set D of directions, a D-tree structure (over
AP) is a Kripke structure K = (AP , S, ”, µ, s

0

) such that s
0

œ D, S is a prefix closed subset of
D+, and ” is the set of pairs (s, sÕ) œ S ◊ S such that there exists d œ D for which sÕ = s · d
(note that ” is completely specified by S). The states of a D-tree structure are called nodes.

A Kripke structure K = (AP , S, ”, µ, s
0

) induces an S-tree structure, called the computation
tree of K , denoted by C(K), which is obtained by unwinding K from the initial state. Formally,
C(K) = (AP , Trk0

K , ”Õ, µÕ, s
0

), where the set of nodes is the set of initial tracks of K and for
all fl, flÕ œ Trk0

K , µÕ(fl) = µ(lst(fl)) and (fl, flÕ) œ ”Õ i� flÕ = fl · s for some s œ S.
Given a strict partial ordering S = (X, <), an interval in S is an ordered pair [x, y] such

that x, y œ X and x Æ y. The interval [x, y] denotes the subset of X given by the set of
points z œ X such that x Æ z Æ y. We denote by I(S) the set of intervals in S.

I Definition 3 (Interval structure). An interval structure IS over AP is a pair IS = (S, ‡)
such that S = (X, <) is a strict partial ordering and ‡ : I(S) ‘æ 2AP is a labeling function
assigning a set of proposition letters to each interval over S.

2.2 Standard temporal logics
In this subsection, we recall the standard propositional temporal logics CTLú, CTL, and
LTL [7, 24]. For a set of proposition letters AP , the formulas Ï of CTLú are defined as follows:

Ï ::= € | p | ¬Ï | Ï · Ï | XÏ | ÏUÏ | ÷Ï,

where p œ AP , X and U are the “next” and “until” temporal modalities, and ÷ is the
existential path quantifier. We also use standard shorthands: ’Ï := ¬÷¬Ï (“universal path
quantifier”), FÏ := €UÏ (“eventually”) and its dual GÏ := ¬F¬Ï (“always”). The logic CTL
is the fragment of CTLú where each temporal modality is immediately preceded by a path
quantifier, while LTL corresponds to the fragment of the formulas devoid of path quantifiers.

Given a Kripke structure K = (AP , S, ”, µ, s
0

), an infinite path fi of K , and a position
i Ø 0 along fi, the satisfaction relation K , fi, i |= Ï for CTLú, written simply fi, i |= Ï when
K is clear from the context, is defined as follows (Boolean connectives are treated as usual):

fi, i |= p … p œ µ(fi(i)),
fi, i |= XÏ … fi, i + 1 |= Ï,
fi, i |= Ï

1

UÏ
2

… for some j Ø i : fi, j |= Ï
2

and fi, k |= Ï
1

for all i Æ k < j,
fi, i |= ÷Ï … for some infinite path fiÕ starting from fi(i), fiÕ, 0 |= Ï.

We say that K is a model of Ï, written K |= Ï, if for all initial infinite paths fi of K , it
holds that K , fi, 0 |= Ï. We also consider a variant of CTLú, called finitary CTLú, where the
path quantifier ÷ of CTLú is replaced with the finitary path quantifier ÷f . In this setting,
path quantification ranges over the tracks (finite paths) starting from the current state. The
satisfaction relation fl, i |= Ï, where fl is a track and i is a position along fl, is similar to that
given for CTLú with the only di�erence of finiteness of paths, and the fact that for a formula
XÏ, fl, i |= XÏ i� i + 1 < |fl| and fl, i + 1 |= Ï. A Kripke structure K is a model of a finitary
CTLú formula if for each initial track fl of K , it holds that K , fl, 0 |= Ï.

L. Bozzelli, A. Molinari, A. Montanari, A. Peron, and P. Sala XX:5

Table 1 Allen’s relations and corresponding HS modalities

Allen relation HS Definition w.r.t. interval structures Example
x y

v z
v z

v z
v z
v z

v z

meets ÈAÍ [x, y]RA[v, z] ≈∆ y = v
before ÈLÍ [x, y]RL[v, z] ≈∆ y < v

started-by ÈBÍ [x, y]RB [v, z] ≈∆ x = v · z < y
finished-by ÈEÍ [x, y]RE [v, z] ≈∆ y = z · x < v

contains ÈDÍ [x, y]RD[v, z] ≈∆ x < v · z < y
overlaps ÈOÍ [x, y]RO[v, z] ≈∆ x < v < y < z

2.3 The interval temporal logic HS
An interval algebra was proposed by Allen in [1] to reason about intervals and their relative
order, while a systematic logical study of interval representation and reasoning was done
a few years later by Halpern and Shoham, who introduced the interval temporal logic HS
featuring one modality for each Allen relation, but equality [9]. Table 1 depicts 6 of the 13
Allen’s relations, together with the corresponding HS (existential) modalities. The other 7
relations are the 6 inverse relations (given a binary relation R , the inverse relation R is such
that bR a if and only if aR b) and equality.

For a set of proposition letters AP , the formulas Â of HS are defined as follows:

Â ::= p | ¬Â | Â · Â | ÈXÍÂ,

where p œ AP and X œ {A, L, B, E, D, O, A, L, B, E, D, O}. For any modality ÈXÍ, the
dual universal modality [X]Â is defined as ¬ÈXÍ¬Â. For any subset of Allen’s relations
{X

1

, . . . , Xn}, let X1 · · · Xn be the HS fragment featuring modalities for X
1

, . . . , Xn only.
We assume the non-strict semantics of HS, which admits intervals consisting of a single

point.1 Under such an assumption, all HS modalities can be expressed in terms of modalities
ÈBÍ, ÈEÍ, ÈBÍ, and ÈEÍ [28], e.g., modality ÈAÍ can be expressed in terms of ÈEÍ and ÈBÍ as
ÈAÍ Ï := ([E]‹ · (Ï ‚ ÈBÍ Ï)) ‚ ÈEÍ([E]‹ · (Ï ‚ ÈBÍ Ï)). We also use the derived operator
ÈGÍ of HS (and its dual [G]), which allows one to select arbitrary subintervals of the given
interval and is defined as: ÈGÍ Â := Â ‚ ÈBÍ Â ‚ ÈEÍ Â ‚ ÈBÍ ÈEÍ Â. HS can be viewed as a
multi-modal logic with ÈBÍ, ÈEÍ, ÈBÍ, and ÈEÍ as primitive modalities and its semantics can be
defined over a multi-modal Kripke structure, called abstract interval model, where intervals
are treated as atomic objects and Allen’s relations as binary relations over intervals.

I Definition 4 (Abstract interval model [18]). An abstract interval model over AP is a tuple
A = (AP , I, BI, EI, ‡), where I is a set of worlds, BI and EI are two binary relations over I,
and ‡ : I ‘æ 2AP is a labeling function assigning a set of proposition letters to each world.

Let A = (AP , I, BI, EI, ‡) be an abstract interval model. In the interval setting, I is
interpreted as a set of intervals, and BI and EI as Allen’s relations B (started-by) and E
(finished-by), respectively; ‡ assigns to each interval in I the set of proposition letters that
hold over it. Given an interval I œ I, the truth of an HS formula over I is inductively defined
as follows (Boolean connectives are treated as usual):

A, I |= p i� p œ ‡(I), for any p œ AP ;
A, I |= ÈXÍÂ, for X œ {B, E}, i� there exists J œ I such that I XI J and A, J |= Â;
A, I |= ÈXÍÂ, for X œ {B, E}, i� there exists J œ I such that J XI I and A, J |= Â.

1 All the results we prove in the paper hold for the strict semantics as well.

XX:6 Interval vs. Point Temporal Logic Model Checking: an Expressiveness Comparison

I Definition 5 (Abstract interval model induced by an interval structure). An interval structure
IS = (S, ‡), with S = (X, <), induces the abstract interval model AIS = (AP , I(S), BI(S)

, EI(S)

,
‡), where [x, y] BI(S)

[v, z] i� x = v and z < y, and [x, y] EI(S)

[v, z] i� y = z and x < v.
For an interval I and an HS formula Â, we write IS , I |= Â to mean that AIS , I |= Â.

2.4 Three variants of HS semantics for model checking
In this section, we define the three variants of HS semantics HSst (state-based semantics), HSlp
(computation-tree-based semantics), and HSlin (trace-based semantics) for model checking
HS against Kripke structures. For each such variant S , the related (finite) model checking
problem is deciding whether a finite Kripke structure is a model of an HS formula under S .

Let us start with the state-based semantics [22], where an abstract interval model is
naturally associated with a given Kripke structure K by considering the set of intervals as
the set TrkK of tracks of K .

I Definition 6 (Abstract interval model induced by a Kripke structure). The abstract interval
model induced by a Kripke structure K = (AP , S, ”, µ, s

0

) is AK = (AP , I, BI, EI, ‡), where
I = TrkK , BI = {(fl, flÕ) œ I ◊ I | flÕ œ Pref(fl)}, EI = {(fl, flÕ) œ I ◊ I | flÕ œ Su�(fl)}, and
‡ : I ‘æ 2AP is such that ‡(fl) =

u

sœstates(fl)

µ(s), for all fl œ I.

According to the definition of ‡, p œ AP holds over fl = v
1

· · · vn if and only if it holds over
all the states v

1

, . . . , vn of fl. This conforms to the homogeneity principle, according to which
a proposition letter holds over an interval if and only if it holds over all its subintervals [26].

I Definition 7 (State-based semantics). Let K be a Kripke structure and Â be an HS formula.
A track fl œ TrkK satisfies Â under the state-based semantics, denoted as K , fl |=st Â, if it
holds that AK , fl |= Â. Moreover, K is a model of Â under the state-based semantics, denoted
as K |=st Â, if for all initial tracks fl œ Trk0

K , it holds that K , fl |=st Â.

We now introduce the computation-tree-based semantics, where we simply consider the
abstract interval model induced by the computation tree of the Kripke structure. Notice that
since each state in a computation tree has a unique predecessor (with the exception of the
initial state), this HS semantics induces a linear reference in the past.

I Definition 8 (Computation-tree-based semantics). A Kripke structure K is a model of an
HS formula Â under the computation-tree-based semantics, written K |=lp Â, if C(K) |=st Â.

Finally, we propose the trace-based semantics, which exploits the interval structures
induced by the infinite paths of the Kripke structure.

I Definition 9 (Interval structure induced by an infinite path). For a Kripke structure K =
(AP , S, ”, µ, s

0

) and an infinite path fi = fi(0)fi(1) · · · of K , the interval structure induced by
fi is IS K ,fi = ((N, <), ‡), where for each interval [i, j], ‡([i, j]) =

uj
h=i µ(fi(h)).

I Definition 10 (Trace-based semantics). A Kripke structure K is a model of an HS formula
Â under the trace-based semantics, denoted as K |=lin Â, i� for each initial infinite path fi
and for each initial interval [0, i], it holds that IS K ,fi, [0, i] |= Â.

3 Expressiveness

In this section, we compare the expressive power of the logics HSst, HSlp, HSlin, LTL, CTL,
and CTLú when interpreted over finite Kripke structures. Given two logics L

1

and L
2

, and

L. Bozzelli, A. Molinari, A. Montanari, A. Peron, and P. Sala XX:7

two formulas Ï
1

œ L
1

and Ï
2

œ L
2

, we say that Ï
1

in L
1

is equivalent to Ï
2

in L
2

if, for
every finite Kripke structure K , K is a model of Ï

1

in L
1

if and only if K is a model of Ï
2

in L
2

. When comparing the expressive power of two logics L
1

and L
2

, we say that L
2

is
subsumed by L

1

, denoted as L
1

Ø L
2

, if for each formula Ï
2

œ L
2

, there exists a formula
Ï

1

œ L
1

such that Ï
1

in L
1

is equivalent to Ï
2

in L
2

. Moreover, L
1

is as expressive as L
2

(or,
L

1

and L
2

have the same expressiveness), written L
1

© L
2

, if both L
1

Ø L
2

and L
2

Ø L
1

.
We say that L

1

is more expressive than L
2

if L
1

Ø L
2

and L
2

”Ø L
1

. Finally, L
1

and L
2

are
expressively incomparable if both L

1

”Ø L
2

and L
2

”Ø L
1

.

3.1 Equivalence between LTL and HSlin

In this section we show that HSlin is as expressive as LTL even for small syntactical fragments
of HSlin. For this purpose, we exploit the well-known equivalence between LTL and First Order
Logic (FO) over infinite words. Recall that given a countable set {x, y, z, . . .} of (position)
variables, FO formulas Ï over a set of proposition symbols AP = {p, . . .} are defined as:

Ï := € | p œ x | x Æ y | x < y | ¬ Ï | Ï · Ï | ÷x.Ï .

We interpret FO formulas Ï over infinite paths fi of Kripke structures K = (AP , S, ”, µ, s
0

).
Given a variable valuation g, assigning to each variable a position i Ø 0, the satisfaction
relation (fi, g) |= Ï corresponds to the standard satisfaction relation (µ(fi), g) |= Ï, where µ(fi)
is the infinite word over 2AP given by µ(fi(0))µ(fi(1)) · · · (for the details, see Appendix A).
We write fi |= Ï to mean that (fi, g

0

) |= Ï, where g
0

(x) = 0 for each variable x. An FO
sentence is a formula with no free variables. The following is a well-known result [10].
I Proposition 1. Given a FO sentence Ï over AP , one can construct an LTL formula Â such
that for all Kripke structures K over AP and infinite paths fi, it holds that fi |= Ï i� fi, 0 |= Â.

Given a HSlin formula Â, we construct a FO sentence ÂFO such that, for all Kripke
structures K , K |=lin Â i� for each initial infinite path fi of K , fi |= ÂFO. The formula ÂFO is
given by ÷x((’z.z Ø x) · ’y.h(Â, x, y)), where h(Â, x, y) is a FO formula having x and y as
free variables (intuitively, representing the endpoints of the current interval) and ensuring
that for each infinite path fi and interval [i, j], IS K ,fi, [i, j] |= Â i� (fi, g) |= h(Â, x, y) for any
valuation g such that g(x) = i and g(y) = j. The construction of h(Â, x, y) is straightforward
(for the details, see Appendix A). Thus, by Proposition 1, we obtain the following result.

I Theorem 11. LTL Ø HSlin.

Conversely, we show that LTL can be translated in linear-time into HSlin (actually, the
fragment AB, featuring only modalities for A and B, is expressive enough for the purpose).
In the following we will make use of the B formula lengthn, with n Ø 1, characterizing the
intervals of length n, which is defined as follows: lengthn := (ÈBÍ . . . ÈBÍ

¸ ˚˙ ˝

n≠1

€) · ([B] . . . [B]
¸ ˚˙ ˝

n

‹).

I Theorem 12. Given an LTL formula Ï, one can construct in linear-time an AB formula
Â such that Ï in LTL is equivalent to Â in ABlin.

Proof. Let f : LTL ‘æ AB be the mapping homomorphic w. r. to the Boolean connectives,
defined as follows for each proposition p and for the temporal modalities X and U:

f(p) = p, f(XÂ) = ÈAÍ(length
2

· ÈAÍ(length
1

· f(Â))),

f(Â
1

UÂ
2

) = ÈAÍ
1

ÈAÍ(length
1

· f(Â
2

)) · [B](ÈAÍ(length
1

· f(Â
1

))
2

.

XX:8 Interval vs. Point Temporal Logic Model Checking: an Expressiveness Comparison

Given a Kripke structure K , an infinite path fi, a position i Ø 0, and an LTL formula
Â, by a straightforward induction on the structure of Â we can show that fi, i |= Â i�
IS K ,fi, [i, i] |= f(Â). Hence K |= Â i� K |=lin length

1

æ f(Â). J

I Corollary 13. HSlin and LTL have the same expressiveness.

3.2 A characterization of HSlp

In this section we show that HSlp is as expressive as finitary CTLú. Actually, the result can be
proved to hold already for the syntactical fragment ABE (which does not feature transposed
modalities). In addition, we show that HSlp is subsumed by CTLú.

We first show that finitary CTLú is subsumed by HSlp. The result is proved by exploiting
a preliminary property stating that, when interpreted over finite words, the BE fragment
of HS and LTL define the same class of finitary languages. For an LTL formula Ï with
proposition symbols over an alphabet � (in our case � is 2AP), Lact(Ï) denotes the set of
non-empty finite words over � satisfying Ï under the standard action-based semantics of
LTL, interpreted over finite words (see [27]). A similar notion can be given for BE formulas
Ï with propositional symbols in � (considered under the homogeneity principle). Then Ï
denotes a language, written Lact(Ï), of non-empty finite words over �, inductively defined as:

Lact(a) = a+ for each a œ �;
Lact(¬Ï) = �+ \ Lact(Ï);
Lact(Ï1

· Ï
2

) = Lact(Ï1

) fl Lact(Ï2

);
Lact(ÈBÍ Ï) = {w œ �+ | Pref(w) fl Lact(Ï) ”= ÿ};
Lact(ÈEÍ Ï) = {w œ �+ | Su�(w) fl Lact(Ï) ”= ÿ}.
We prove that under the action-based semantics, BE formulas and LTL formulas define

the same class of finitary languages. By proceeding as in Section 3.1, one can easily show
that, over finite words, the class of languages defined by the fragment BE is subsumed by that
defined by LTL. To prove the converse direction we exploit an algebraic condition introduced
in [29], here called LTL-closure, which gives, for a class of finitary languages, a su�cient
condition to guarantee the inclusion of the class of LTL-definable languages.

I Definition 14 (LTL-closure). A class C of languages of finite words over finite alphabets
is LTL-closed i� the following conditions are satisfied, where � and � are finite alphabets,
b œ � and � = � \ {b}:
1. C is closed under language complementation and language intersection.
2. If L œ C with L ™ �+, then �úbL, �úb(L + Á), Lb�ú, (L + Á)b�ú are in C.
3. Let U

0

= �úb, h
0

: U
0

æ � and h : U+

0

æ �+ be defined by h(u
0

u
1

. . . un) =
h

0

(u
0

) . . . h
0

(un). Assume that for each d œ �, the language Ld = {u œ �+ | h
0

(ub) = d}
is in C. Then for each language L œ C s.t. L ™ �+, the language �úbh≠1(L)�ú is in C.

I Theorem 15 ([29]). Any LTL-closed class C of finitary languages includes the class of
LTL-definable finitary languages.

I Theorem 16. Let Ï be an LTL formula over a finite alphabet �. Then there exists a BE
formula ÏHS over � such that Lact(ÏHS) = Lact(Ï).

Proof. It su�ces to prove that the class of finitary languages definable by BE formulas is
LTL-closed, and to apply Theorem 15 (the proof of LTL-closure is reported in Appendix B). J

By exploiting Theorem 16, we establish the following result.

L. Bozzelli, A. Molinari, A. Montanari, A. Peron, and P. Sala XX:9

I Theorem 17. Let Ï be a finitary CTLú formula over AP . Then there is an ABE formula ÏHS
over AP s.t. for all Kripke structures K over AP and tracks fl, K , fl, 0 |= Ï i� K , fl |=st ÏHS.

Proof. The proof is by induction on the nesting depth of modality ÷f in Ï. The base case
(Ï is a finitary LTL formula over AP) is similar to the inductive step, thus we can focus
our attention on the latter. Let H be the non-empty set of subformulas of Ï of the form
÷f Â which do not occur in the scope of the path quantifier ÷f . Then Ï can be seen as an
LTL formula over the set of atomic propositions AP = AP fi H. Let � = 2AP and Ï be the
LTL formula over � obtained from Ï by replacing each occurrence of p œ AP in Ï with the
formula

x

P œ� : pœP P , according to the LTL action-based semantics.
Given a Kripke structure K over AP with labeling µ and a track fl of K , we denote by flH

the finite word over 2AP of length |fl| defined as flH(i) = µ(fl(i)) fi {÷f Â œ H | K , fl, i |= ÷f Â},
for all i œ [0, |fl| ≠ 1]. One can easily show by structural induction on Ï that

Claim 1: K , fl, 0 |= Ï i� flH œ Lact(Ï).

By Theorem 16, there exists a BE formula ÏHS over � such that Lact(Ï) = Lact(ÏHS).
Moreover, by the induction hypothesis, for each formula ÷f Â œ H, there exists an ABE formula
ÂHS such that for all Kripke structures K and tracks fl of K , K , fl, 0 |= Â i� K , fl |=st ÂHS.
Since fl is arbitrary, K , fl, i |= ÷f Â i� K , fl[i, i], 0 |= ÷f Â i� K , fl[i, i] |=st ÈAÍ ÂHS, for each
i Ø 0. Let ÏHS be the ABE formula over AP obtained from the BE formula ÏHS by replacing
each occurrence of P œ � in ÏHS with the formula

[G](length
1

æ
fi

÷f ÂœHflP

ÈAÍ ÂHS ·
fi

÷f ÂœH\P

¬ ÈAÍ ÂHS ·
fi

pœAPflP

p ·
fi

pœAP\P

¬p).

Since for all i Ø 0 and ÷f Â œ H, K , fl, i |= ÷f Â i� K , fl[i, i] |=st ÈAÍ ÂHS, by a straightforward
induction on the structure of ÏHS, for all Kripke structures K and tracks fl of K we have
K , fl |=st ÏHS i� flH œ Lact(ÏHS). Therefore, since Lact(Ï) = Lact(ÏHS), by Claim 1 K , fl, 0 |= Ï
i� K , fl |=st ÏHS, for arbitrary Kripke structures K and tracks fl of K . J

Since for the fragment ABE of HS the computation-tree-based semantics coincides with
the state-based semantics, by Theorem 17 we obtain the following corollary.

I Corollary 18. Finitary CTLú is subsumed by both HSst and HSlp.

Conversely, we show now that HSlp is subsumed by both CTLú and the finitary variant of
CTLú. For this purpose, we first introduce a hybrid and linear-past extension of CTLú, called
hybrid CTLú

lp, and its finitary variant, called finitary hybrid CTLú
lp. Hybrid logics (see [3]),

besides standard modalities, make use of explicit variables and quantifiers that bind them.
Variables and binders allow us to easily mark points in a path, which will be considered as
starting and ending points of intervals, thus permitting a natural encoding of HSlp. Actually,
we will show that the restricted form of use of variables and binders exploited in our encoding
does not increase the expressive power of (finitary) CTLú (as it happens for an unrestricted
use), thus proving the desired result. We start by defining hybrid CTLú

lp.
For a countable set {x, y, z, . . .} of (position) variables, the set of formulas Ï of hybrid

CTLú
lp over AP is defined as follows:

Ï ::= € | p | x | ¬Ï | Ï ‚ Ï | ¿x.Ï | XÏ | ÏUÏ | X≠Ï | ÏU≠Ï | ÷Ï,

where X≠ (“previous”) and U≠ (“since”) are the past counterparts of the “next” and “until”
modalities X and U, and ¿x is the downarrow binder operator [3], which binds x to the

XX:10 Interval vs. Point Temporal Logic Model Checking: an Expressiveness Comparison

current position along the given initial infinite path. We also use the standard shorthands
F≠Ï := €U≠Ï (“eventually in the past”) and its dual G≠Ï := ¬F≠¬Ï (“always in the past”).
As usual, a sentence is a formula with no free variables. Let K be a Kripke structure and
Ï be a hybrid CTLú

lp formula. For an initial infinite path fi of K , a variable valuation g
assigning to each variable x a position along fi, and i Ø 0, the satisfaction relation fi, g, i |= Ï
is defined as follows (we omit the clauses for the Boolean connectives and for U and X):

fi, g, i |= X≠Ï … i > 0 and fi, g, i ≠ 1 |= Ï,
fi, g, i |= Ï

1

U≠Ï
2

… for some j Æ i : fi, g, j |= Ï
2

and fi, g, k |= Ï
1

for all j < k Æ i,
fi, g, i |= ÷Ï … for some initial infinite path fiÕ s.t. fiÕ[0, i] = fi[0, i], fiÕ, g, i |= Ï,
fi, g, i |= x … g(x) = i,
fi, g, i |= ¿x.Ï … fi, g[x Ω i], i |= Ï,

where g[x Ω i](x) = i and g[x Ω i](y) = g(y) for y ”= x. A Kripke structure K is a model of
a formula Ï if for each initial infinite path fi, fi, g

0

, 0 |= Ï, where g
0

assigns 0 to each variable.
Note that path quantification is “memoryful”, i.e., it ranges over infinite paths that start
at the root and visit the current node of the computation tree. Clearly, the semantics for
the syntactical fragment CTLú coincides with the standard one. If we discharge the use of
variables and binder modalities, we obtain the logic CTLú

lp, a well-known linear-past and
equally expressive extension of CTLú [11, 12]. We also consider the finitary variant of hybrid
CTLú

lp, where the path quantifier ÷ is replaced with the finitary path quantifier ÷f . This logic
corresponds to an extension of finitary CTLú and its semantics is similar to that of hybrid
CTLú

lp with the exception that path quantification ranges over the finite paths (tracks) that
start at the root and visit the current node of the computation tree.

In the following we will use the fragment of hybrid CTLú
lp consisting of well-formed

formulas, namely, formulas Ï where: (1) each subformula ÷Â of Ï has at most one free
variable; (2) each subformula ÷Â(x) of Ï having x as free variable occurs in Ï in the context
(F≠x) · ÷Â(x). Intuitively, for each state subformula ÷Â, the unique free variable (if any)
refers to ancestors of the current node in the computation tree. The notion of well-formed
formula of finitary hybrid CTLú

lp is similar: the path quantifier ÷ is replaced by its finitary
version ÷f . The well-formedness constraint ensures that a formula captures only branching
regular requirements. As an example, the formula ÷F¿x.G≠(¬X≠€ æ ’F(x · p)) is not
well-formed and requires that there is a level of the computation tree such that each node
in the level satisfies p. This represents a well-known non-regular context-free branching
requirement (see, e.g., [2]). We first show that HSlp can be translated into the well-formed
fragment of hybrid CTLú

lp (resp., well-formed fragment of finitary hybrid CTLú
lp). Then we

show that this fragment is subsumed by CTLú (resp., finitary CTLú).
I Proposition 2. Given a HSlp formula Ï, one can construct in linear-time an equivalent
well-formed sentence of hybrid CTLú

lp (resp., finitary hybrid CTLú
lp).

Proof. We focus on the translation from HSlp into the well-formed fragment of hybrid CTLú
lp.

The translation from HSlp into the well-formed fragment of finitary hybrid CTLú
lp is similar.

Let Ï be a HSlp formula. The desired hybrid CTLú
lp sentence is given by ¿x.G f(Ï, x), where

the mapping f(Ï, x) is homomorphic with respect to the Boolean connectives, and is defined
for the atomic propositions and the other modalities as follows (y is a fresh variable):

f(p, x) = G≠((F≠x) æ p),
f(ÈBÍ Â, x) = X≠F≠(f(Â, x) · F≠x),
f(ÈBÍ Â, x) = (F≠x) · ÷(XFf(Â, x)),
f(ÈEÍ Â, x) = ¿y.F≠!

x · XF¿x.F(y · f(Â, x))
"

,
f(ÈEÍ Â, x) = ¿y.F≠!

(XFx) · ¿x.F(y · f(Â, x))
"

.

L. Bozzelli, A. Molinari, A. Montanari, A. Peron, and P. Sala XX:11

Clearly ¿x.G f(Ï, x) is well-formed. Moreover, let K be a Kripke structure, [h, i] be an
interval of positions, g be a valuation assigning to the variable x the position h, and fi be an
initial infinite path. By a straightforward induction on the structure of Ï, one can show that
K , fi, g, i |= f(Ï, x) if and only if C(K), C(fi, h, i) |=st Ï, where C(fi, h, i) denotes the track of
the computation tree C(K) starting from fi[0, h] and leading to fi[0, i]. Hence K is a model
of ¿x.G f(Ï, x) if for each initial track fl of C(K) we have C(K), fl |=st Ï. J

Let LTLp be the past extension of LTL, obtained by adding the past modalities X≠ and
U≠. By exploiting the well-formedness requirement and the well-known separation theorem
for LTLp over finite and infinite words [8] (i.e., any LTLp formula can be e�ectively converted
into an equivalent Boolean combination of LTL formulas and pure past LTLp formulas), and
proceeding by induction on the nesting depth of path quantifiers, we establish the following
result (the proof is given in Appendix C).
I Proposition 3. The set of well-formed sentences of hybrid CTLú

lp (resp., finitary hybrid
CTLú

lp) has the same expressiveness as CTLú (resp., finitary CTLú).
By Corollary 18, and Propositions 2 and 3, we obtain the main result of Section 3.2.

I Theorem 19. CTLú Ø HSlp. Moreover, HSlp is as expressive as finitary CTLú.

3.3 Expressiveness comparison of HSlin, HSst and HSlp

We first show that HSst is not subsumed by HSlp. As a matter of fact we show that
HSst is sensitive to unwinding, allowing us to discriminate finite Kripke structures having
the same computation tree (whereas they are indistinguishable by HSlp). In particular,
let us consider the two finite Kripke structures K

1

and K
2

of Figure 3. Since K
1

and
K

2

have the same computation tree, no HS formula Ï under the computation-tree-based
semantics can distinguish K

1

and K
2

, i.e., K
1

|=lp Ï i� K
2

|=lp Ï. On the other hand, the
requirement “each state reachable from the initial one where p holds has a predecessor where
p holds as well” can be expressed, under the state-based semantics, by the HS formula
Â := ÈEÍ(p · length

1

) æ ÈEÍ(length
1

· ÈAÍ(p · ¬length
1

)). Clearly K
1

|=st Â but K
2

”|=st Â.
Hence we obtain the following result.
I Proposition 4. HSlp ”Ø HSst.

Since HSlp and finitary CTLú have the same expressiveness (Theorem 19) and finitary
CTLú is subsumed by HSst (Corollary 18), by Proposition 4 we obtain the following result.

I Corollary 20. HSst is more expressive than HSlp.

Let us now consider the CTL formula ’G÷Fp asserting that from each state reachable from
the initial one, it is possible to reach a state where p holds. It is well-known that this formula
is not LTL-expressible. Thus, by Corollary 13, there is no equivalent HS formula under the
trace-based semantics. On the other hand, the requirement ’G÷Fp can be expressed under
the state-based (resp., computation-tree-based) semantics by the HS formula ÈBÍÈEÍp.
I Proposition 5. HSlin ”Ø HSst and HSlin ”Ø HSlp.

Next we show that HSlin ”Æ HSst and HSlin ”Æ HSlp. To this end we establish the following.

K
1

: p K
2

: p p

Figure 3 The Kripke structures K1 and K2.

XX:12 Interval vs. Point Temporal Logic Model Checking: an Expressiveness Comparison

Kn:
s

0

s
1

s
2n t

........ p

Figure 4 The Kripke structure Kn with n Ø 1.

I Proposition 6. The LTL formula F p (equivalent to the CTL formula ’F p) cannot be
expressed in either HSlp or HSst.

We prove Proposition 6 for the state-based semantics (for the computation-tree-based
semantics the proof is similar). We exhibit two families of Kripke structures (Kn)nØ1

and
(Mn)nØ1

over {p} such that for all n Ø 1 the LTL formula F p distinguishes Kn and Mn, and
for every HS formula Â of size at most n, Â does not distinguish Kn and Mn under the
state-based semantics. Hence the result follows. Fix n Ø 1. The Kripke structure Kn is
given in Figure 4. The Kripke structure Mn is obtained from Kn by setting as its initial state
s

1

instead of s
0

. Formally, Kn = ({p}, Sn, ”n, µn, s
0

) and Mn = ({p}, Sn, ”n, µn, s
1

), where
Sn = {s

0

, s
1

, . . . , s
2n, t}, ”n = {(s

0

, s
0

), (s
0

, s
1

), . . . , (s
2n≠1

, s
2n), (s

2n, t), (t, t)}, µ(si) = ÿ for
all 0 Æ i Æ 2n, and µ(t) = {p}. Clearly Kn ”|= Fp and Mn |= Fp.

We say that a HS formula Â is balanced if, for each subformula ÈBÍ ◊ (resp., ÈBÍ ◊), ◊ is of
the form ◊

1

· ◊
2

with |◊
1

| = |◊
2

|. By using conjunctions of €, one can trivially convert a HS
formula Â into a balanced HS formula which is equivalent to Â under any of the considered
HS semantic variants. Lemma 21 is proved in Appendix D: by such a lemma and the fact
that, for each n Ø 1, Kn ”|= Fp and Mn |= Fp, we get a proof of Proposition 6.

I Lemma 21. For all n Ø 1 and balanced HS formulas Â s.t. |Â| Æ n, Kn |=st Â i� Mn |=st Â.

By Propositions 5–6, we obtain the following result.

I Corollary 22. HSlin and HSst (resp., HSlp) are expressively incomparable.

The proved results also allow us to establish the expressiveness relations between HSst,
HSlp and the standard branching temporal logics CTL and CTLú.

I Corollary 23. (1) HSst and CTLú (resp., CTL) are expressively incomparable; (2) HSlp and
finitary CTLú are less expressive than CTLú; (3) HSlp and CTL are expressively incomparable.

Proof. (Point 1) By Proposition 6 and the fact that CTLú is not sensitive to unwinding.
(Point 2) By Theorem 19, HSlp is subsumed by CTLú, and HSlp and finitary CTLú have the
same expressiveness. Hence, by Proposition 6, the result follows.
(Point 3) By Proposition 6, it su�ces to show that there exists a HSlp formula which cannot
be expressed in CTL. Let us consider the CTLú formula Ï := ÷

!

((p
1

Up
2

) ‚ (q
1

Uq
2

)) U r
"

over
the set of propositions {p

1

, p
2

, q
1

, q
2

, r}. It is shown in [7] that Ï cannot be expressed in
CTL. Clearly if we replace the path quantifier ÷ in Ï with the finitary path quantifier ÷f , we
obtain an equivalent formula of finitary CTLú. Thus, since HSlp and finitary CTLú have the
same expressiveness (Theorem 19), the result follows. J

4 Conclusions and future work

In this paper, we have studied three semantic variants, namely, HSst, HSlp, and HSlin, of the
interval temporal logic HS, comparing their expressiveness to that of the standard temporal
logics LTL, CTL, finitary CTLú, and CTLú. The reported results imply the decidability of
the model checking problem for HSlp and HSlin; the related complexity issues will be studied
in the future work. Moreover, we shall investigate how the expressiveness changes when the
homogeneity assumption is relaxed.

L. Bozzelli, A. Molinari, A. Montanari, A. Peron, and P. Sala XX:13

References
1 J. F. Allen. Maintaining knowledge about temporal intervals. Communications of the ACM,

26(11):832–843, 1983.
2 R. Alur, P. Cern˝, and S. Zdancewic. Preserving secrecy under refinement. In ICALP,

LNCS 4052, pages 107–118. Springer, 2006.
3 P. Blackburn and J. Seligman. What are hybrid languages? In AiML, pages 41–62. CSLI

Publications, 1998.
4 L. Bozzelli, A. Molinari, A. Montanari, A. Peron, and P. Sala. Interval Temporal Logic

Model Checking: the Border Between Good and Bad HS Fragments. In IJCAR, LNAI
9706, pages 389–405. Springer, 2016. doi:10.1007/978-3-319-40229-1_27.

5 L. Bozzelli, A. Molinari, A. Montanari, A. Peron, and P. Sala. Model Checking the Logic
of Allen’s Relations Meets and Started-by is P

NP-Complete. In GandALF, pages 76–90,
2016. doi:10.4204/EPTCS.226.6.

6 D. Bresolin, D. Della Monica, V. Goranko, A. Montanari, and G. Sciavicco. The dark side
of interval temporal logic: marking the undecidability border. Annals of Mathematics and
Artificial Intelligence, 71(1-3):41–83, 2014.

7 E. A. Emerson and J. Y. Halpern. “Sometimes” and “not never” revisited: on branching
versus linear time temporal logic. Journal of the ACM, 33(1):151–178, 1986.

8 D. M. Gabbay. The declarative past and imperative future: Executable temporal logic for
interactive systems. In Temporal Logic in Specification, LNCS 398, pages 409–448. Springer,
1987.

9 J. Y. Halpern and Y. Shoham. A propositional modal logic of time intervals. Journal of
the ACM, 38(4):935–962, 1991.

10 H. Kamp. Tense Logic and the Theory of Linear Order. PhD thesis, Ucla, 1968.
11 O. Kupferman and A. Pnueli. Once and for all. In LICS, pages 25–35. IEEE Computer

Society, 1995.
12 O. Kupferman, A. Pnueli, and M. Y. Vardi. Once and for all. J. Comput. Syst. Sci.,

78(3):981–996, 2012.
13 K. Lodaya. Sharpening the undecidability of interval temporal logic. In ASIAN, LNCS

1961, pages 290–298. Springer, 2000.
14 A. Lomuscio and J. Michaliszyn. An epistemic Halpern-Shoham logic. In IJCAI, pages

1010–1016, 2013.
15 A. Lomuscio and J. Michaliszyn. Decidability of model checking multi-agent systems against

a class of EHS specifications. In ECAI, pages 543–548, 2014.
16 A. Lomuscio and J. Michaliszyn. Model checking multi-agent systems against epistemic HS

specifications with regular expressions. In KR, pages 298–308. AAAI Press, 2016.
17 J. Marcinkowski and J. Michaliszyn. The undecidability of the logic of subintervals. Fun-

damenta Informaticae, 131(2):217–240, 2014.
18 A. Molinari, A. Montanari, A. Murano, G. Perelli, and A. Peron. Checking interval

properties of computations. Acta Informatica, 2016. Accepted for publication. doi:

10.1007/s00236-015-0250-1.
19 A. Molinari, A. Montanari, and A. Peron. Complexity of ITL model checking: some

well-behaved fragments of the interval logic HS. In TIME, pages 90–100, 2015. doi:

10.1109/TIME.2015.12.
20 A. Molinari, A. Montanari, and A. Peron. A model checking procedure for interval temporal

logics based on track representatives. In CSL, pages 193–210, 2015. doi:10.4230/LIPIcs.

CSL.2015.193.
21 A. Molinari, A. Montanari, A. Peron, and P. Sala. Model Checking Well-Behaved Fragments

of HS: the (Almost) Final Picture. In KR, pages 473–483, 2016.

http://dx.doi.org/10.1007/978-3-319-40229-1_27
http://dx.doi.org/10.4204/EPTCS.226.6
http://dx.doi.org/10.1007/s00236-015-0250-1
http://dx.doi.org/10.1007/s00236-015-0250-1
http://dx.doi.org/10.1109/TIME.2015.12
http://dx.doi.org/10.1109/TIME.2015.12
http://dx.doi.org/10.4230/LIPIcs.CSL.2015.193
http://dx.doi.org/10.4230/LIPIcs.CSL.2015.193

XX:14 Interval vs. Point Temporal Logic Model Checking: an Expressiveness Comparison

22 A. Montanari, A. Murano, G. Perelli, and A Peron. Checking interval properties of com-
putations. In TIME, pages 59–68, 2014.

23 B. Moszkowski. Reasoning About Digital Circuits. PhD thesis, Stanford University, CA,
1983.

24 A. Pnueli. The temporal logic of programs. In FOCS, pages 46–57. IEEE, 1977.
25 I. Pratt-Hartmann. Temporal prepositions and their logic. Artificial Intelligence, 166(1-

2):1–36, 2005.
26 P. Roeper. Intervals and tenses. Journal of Philosophical Logic, 9:451–469, 1980.
27 M. Y. Vardi. An automata-theoretic approach to linear temporal logic. In Logics for

concurrency, pages 238–266. Springer, 1996.
28 Y. Venema. Expressiveness and completeness of an interval tense logic. Notre Dame Journal

of Formal Logic, 31(4):529–547, 1990.
29 T. Wilke. Classifying discrete temporal properties. In STACS, LNCS 1563, pages 32–46.

Springer, 1999.

L. Bozzelli, A. Molinari, A. Montanari, A. Peron, and P. Sala XX:15

Appendix

A Proof of Theorem 11

Recall that we interpret FO formulas Ï over infinite paths fi of Kripke structures K =
(AP , S, ”, µ, s

0

). Given a variable valuation g, the satisfaction relation (fi, g) |= Ï is inductively
defined as follows (we omit the standard rules for the Boolean connectives):

(fi, g) |= p œ x … p œ µ(fi(g(x))),
(fi, g) |= x op y … g(x) op g(y), for op œ {<, Æ},
(fi, g) |= ÷x.Ï … (fi, g[x Ω i]) |= Ï for some i Ø 0,

where g[x Ω i](x) = i and g[x Ω i](y) = g(y) for y ”= x. Notice that the satisfaction relation
depends only on the values assigned to the variables occurring free in the given formula Ï.
Now we prove Theorem 11.

I Theorem 11. LTL Ø HSlin.

Proof. We first inductively define a mapping h assigning to each triple (Ï, x, y), consisting
of a HS formula Ï and two distinct positions variables x, y, a FO formula having as free
variables x and y. The mapping h is homomorphic with respect to the Boolean connectives,
and is defined for atomic propositions and modal operators as follows (z is a fresh position
variable):

h(p, x, y) = ’z.((z Ø x · z Æ y) æ p œ z),
h(ÈEÍÂ, x, y) = ÷z.(z > x · z Æ y · h(Â, z, y)),
h(ÈBÍÂ, x, y) = ÷z.(z Ø x · z < y · h(Â, x, z)),
h(ÈEÍÂ, x, y) = ÷z.(z < x · h(Â, z, y)),
h(ÈBÍÂ, x, y) = ÷z.(z > y · h(Â, x, z)).

Given a Kripke structure K , an infinite path fi, an interval of positions [i, j], and an
HSlin formula Â, by a straightforward induction on the structure of Â, we can show that
IS K ,fi, [i, j] |= Â i� (fi, g) |= h(Â, x, y) for any valuation such that g(x) = i and g(y) = j.
Now, let us consider the FO sentence h(Â) given by ÷x((’z.z Ø x) · ’y.h(Â, x, y)). Clearly
K |=lin Â i� for each initial infinite path fi of K , it holds that fi |= h(Â). By Proposition 1, it
follows that one can construct an LTL formula hÕ(Â) such that hÕ(Â) in LTL is equivalent to
Â in HSlin. J

B Proof of Theorem 16

By Theorem 15, we just need to prove the following.

I Theorem 24. The class of languages of finite words definable by BE formulas is LTL-closed.

Since the class of BE-definable languages is obviously closed under language complement-
ation and language intersection, Theorem 24 directly follows from Definition 14 and the
following two Lemmata 25 and 26.

I Lemma 25. Let � be a finite alphabet, b œ �, � = �\{b}, L ™ �+, and Â be a BE formula
over � such that Lact(Â) = L. Then, one can construct BE formulas capturing under the
action-based semantics the languages bL, �úbL, �úb(L + Á), Lb, Lb�ú, (L + Á)b�ú, and bLb.

XX:16 Interval vs. Point Temporal Logic Model Checking: an Expressiveness Comparison

Proof. We focus on the languages bL, �úbL, and bLb (for the other languages the proof is
similar). Let Â be a BE formula over � such that Lact(Â) = L.

Proof for the language bL: we construct by structural induction on Â a BE formula hb(Â) as
follows. The mapping hb is homomorphic with respect to the Boolean connectives, and is
defined for the atomic actions in � and modalities ÈEÍ and ÈBÍ as follows:

for all a œ �, hb(a) = a ‚ (ÈBÍ b · ÈEÍ a · [E]a);
hb(ÈBÍ ◊) = (ÈBÍ hb(◊) · ¬ ÈBÍ b) ‚ ÈBÍ(hb(◊) · ÈBÍ b);
hb(ÈEÍ ◊) = (ÈEÍ hb(◊) · ¬ ÈBÍ b) ‚ (ÈBÍ b · ÈEÍ ÈEÍ hb(◊)).

We can show by a straightforward structural induction on Â that the following fact holds.

Claim 1: Let u œ �+, uÕ = bu, and |u| = n + 1. Then, for all i, j œ [0, n] with i Æ j,
u[i, j] œ Lact(Â) i� uÕ[î, j + 1] œ Lact(hb(Â)) where î = i if i = 0, and î = i + 1 otherwise.

By Claim 1, for each u œ �+, u œ Lact(Â) i� bu œ Lact(hb(Â)). Therefore the formula
(¬length

1

· ÈBÍ b · [E](¬b · [B]¬b)) · hb(Â) captures the language bLact(Â).

Proof for the language �úbL: by the proof given for the language bL, where L ™ �+, one can
construct a BE formula Ï capturing bL. Hence a BE formula capturing �úbL is Ï ‚ ÈEÍ Ï.

Proof for the language bLb: by the proof given for the language bL, where L ™ �+, one can
build a BE formula Ï capturing bL. We construct by structural induction on Ï a BE formula
kb(Ï) as follows. The mapping kb is homomorphic with respect to the Boolean connectives,
and is defined for the atomic actions in � and modalities ÈEÍ and ÈBÍ as follows:

for all a œ �, kb(a) = a ‚ (ÈEÍ b · ÈBÍ a · [B]a);
kb(b) = b;
kb(ÈBÍ ◊) = (ÈBÍ kb(◊) · ¬ ÈEÍ b) ‚ (ÈEÍ b · ÈBÍ ÈBÍ kb(◊)).
kb(ÈEÍ ◊) = (ÈEÍ kb(◊) · ¬ ÈEÍ b) ‚ ÈEÍ(kb(◊) · ÈEÍ b).

By a straightforward structural induction on Ï, we can show that the following fact holds.

Claim 2: Let u œ �+ and |bu| = n + 1. Then, for all i, j œ [0, n] with i Æ j, bu[i, j] œ Lact(Ï)
i� bub[i, ĵ] œ Lact(kb(Ï)) where ĵ = j if j < n, and ĵ = n + 1 otherwise.

By Claim 2, for each u œ �+, bu œ Lact(Ï) i� bub œ Lact(kb(Ï)). Thus the formula
(¬length

1

· ¬length
2

· ÈBÍ b · ÈEÍ b · [E][B]¬b) · hb(Â) captures the language Lact(Ï)b, and
this concludes the proof of the lemma. J

I Lemma 26. Let � and � be finite alphabets, b œ �, � = � \ {b}, U
0

= �úb, h
0

: U
0

æ �
and h : U+

0

æ �+ be defined by h(u
0

u
1

. . . un) = h
0

(u
0

) . . . h
0

(un). Assume that, for each
d œ �, there is a BE formula capturing the language Ld = {u œ �+ | h

0

(ub) = d}. Then for
each BE formula Ï over �, one can construct a BE formula over � capturing the language
�úbh≠1(Lact(Ï))�ú.

Proof. By hypothesis and Lemma 25, for each d œ � there exists a BE formula ◊d over �
capturing the language bLdb, where Ld = {u œ �+ | h

0

(ub) = d}. Hence evidently there is a
BE formula ◊̂d over � capturing the language bL̂db, where L̂d = {u œ �ú | h

0

(ub) = d} (note
that Ld = L̂d \ {Á}). Let Ï be a BE formula over �. By structural induction over Ï, we
construct a BE formula Ï+ over � such that Lact(Ï+) = �úbh≠1(Lact(Ï))�ú. The formula
Ï+ is defined as follows:

Ï = d with d œ �. We have that Lact(d) = d+ and �úbh≠1(Lact(d))�ú is the set of finite
words in �úb�úb�ú such that each subword u[i, j] of u which is in b�úb is in bL̂db as well.

L. Bozzelli, A. Molinari, A. Montanari, A. Peron, and P. Sala XX:17

Thus Ï+ is defined as follows, where Âb := ¬length
1

· ÈBÍ b · ÈEÍ b · [E][B]¬b captures
the words in b�úb:

Ï+ = ÈGÍ(Âb · ◊̂d) · [G](Âb æ ◊̂d).

Ï = ¬◊. We have that

�úbh≠1(Lact(Ï))�ú = �úb�úb�ú fl �úbh≠1(Lact(◊))�ú.

Thus Ï+ is given by ¬◊+ · ÈGÍ Âb, where Âb has been defined in the previous case.
Ï = ◊ · Â. We take Ï+ = ◊+ · Â+, and the correctness of the construction easily follows.
Ï = ÈBÍ ◊. Clearly �úbh≠1(Lact(ÈBÍ ◊))�ú is the set of finite words over � featuring a
proper prefix in �úbh≠1(Lact(◊))�úb. Thus Ï+ is given by:

Ï+ = ÈBÍ(ÈEÍ b · ÈBÍ(◊+ · ÈEÍ b)).

Ï = ÈEÍ ◊. Clearly �úbh≠1(Lact(ÈEÍ ◊))�ú is the set of finite words over � featuring a
proper su�x in b�úbh≠1(Lact(◊))�ú. Thus Ï+ is given by:

Ï+ = ÈEÍ(ÈBÍ b · ÈEÍ(◊+ · ÈBÍ b)).

The proof of the lemma is complete. J

C Proof of Proposition 3

In this section, we show that the well-formed fragment of hybrid CTLú
lp (resp., finitary

hybrid CTLú
lp) is not more expressive than CTLú (resp., finitary CTLú). Here we focus on the

well-formed fragment of hybrid CTLú
lp (the proof for the finitary variant is similar).

We need additional definitions and preliminary results. A pure past LTLp formula is a
LTLp formula which does not contain occurrences of future temporal modalities. Given two
formulas Ï and ÏÕ of hybrid CTLú

lp, Ï and ÏÕ are congruent if for every Kripke structure K ,
initial infinite path fi, valuation g, and current position i, K , fi, g, i |= Ï i� K , fi, g, i |= ÏÕ.
As usual, for a formula Ï of hybrid CTLú

lp with one free variable x, we also write Ï(x);
moreover, since the satisfaction relation depends only on the variables occurring free in the
given formula, for Ï(x) we use the notation K , fi, i |= Ï(x Ω h) to mean that K , fi, g, i |= Ï
for any valuation g assigning h to the unique free variable x. For a formula Ï of hybrid
CTLú

lp, let ÷SubF(Ï) be the set of subformulas of Ï of the form ÷Â which do not occur in the
scope of the path quantifier ÷. We now introduce the notion of simple hybrid CTLú

lp formula.

I Definition 27. Given a variable x, a simple hybrid CTLú
lp formula Â with respect to x is a

hybrid CTLú
lp formula satisfying the following syntactical requirements:

x is the unique variable occurring in Â;
Â does not contain occurrences of the binder modalities and past temporal modalities;
÷SubF(Â) consists of CTLú formulas.

Intuitively, a simple hybrid CTLú
lp formula Â with respect to x over AP can be seen as a

CTLú formula over the set of propositions AP fi {x}. We make now the following observation.

I Lemma 28. Let Â be a simple hybrid CTLú
lp formula with respect to x. Then (F≠x) · Â is

congruent to (F≠x) · ›, where › is a Boolean combination of the atomic formula x and CTLú

formulas.

XX:18 Interval vs. Point Temporal Logic Model Checking: an Expressiveness Comparison

Proof. Let Â be a simple hybrid CTLú
lp formula with respect to x. We denote by ‚Â the

CTLú formula obtained from Â by replacing each occurrence of x in Â with false. The proof
is by structural induction on Â. The base case is obvious. As for the inductive step, Â
is a Boolean combination of simple hybrid CTLú

lp formulas ◊, where ◊ is either an atomic
proposition, or the variable x, or a CTLú formula, or a simple formula of the form X◊

1

or
◊

1

U◊
2

. Thus we just need to consider the cases where ◊ = X◊
1

or ◊
1

U◊
2

. For ◊ = X◊
1

, the
result follows from the fact that (F≠x) · ◊ is congruent to (F≠x) · X ‚◊

1

. For ◊ = ◊
1

U◊
2

, the
result follows from the inductive hypothesis and the fact that (F≠x) · ◊ is congruent to
(F≠x) · (◊

2

‚ X(\◊
1

U◊
2

)). J

Then we deduce the following crucial technical result by exploiting the well-known
separation theorem for LTLp over infinite words [8].

I Lemma 29. Let (F≠x) · ÷Ï(x) (resp., ÷Ï) be a well-formed formula (resp., well-formed
sentence) of hybrid CTLú

lp such that ÷SubF(Ï) consists of CTLú formulas. Then, (F≠x)·÷Ï(x)
(resp., ÷Ï) is congruent to a well-formed formula of hybrid CTLú

lp which is a Boolean
combination of CTLú formulas and formulas that correspond to pure past LTLp formulas over
the set of atomic propositions given by AP fi ÷SubF(Ï) fi {x} (resp., AP fi ÷SubF(Ï)).

Proof. We focus on well-formed formulas of the form (F≠x) · ÷Ï(x) (the case of well-formed
sentences of the form ÷Ï is similar). Let AP = AP fi÷SubF(Ï)fi{x}. By hypothesis ÷SubF(Ï)
consists of CTLú formulas. Given a Kripke structure K = (AP , S, ”, µ, s

0

), an initial infinite
path fi, and h Ø 0, we denote by fiAP ,h the infinite word over 2AP defined as follows for every
position i Ø 0:

fiAP ,h(i) fl AP = µ(fi(i));
fiAP ,h(i) fl ÷SubF(Ï) = {Â œ ÷SubF(Ï) | K , fi, i |= Â};
x œ fiAP ,h(i) i� i = h.

By using a fresh position variable present, which intuitively represents the current position,
the formula Ï(x) can be easily converted into a FO formula ÏFO(present) over AP having
present as unique free variable, such that for all Kripke structures K , initial infinite paths fi,
and positions i and h:

K , fi, i |= Ï(x Ω h) i� fiAP ,h |= ÏFO(present Ω i). (1)

By the well-known separation theorem for LTLp [8] and the equivalence of FO and LTLp

over infinite words, starting from the FO formula ÏFO(present), one can construct an LTLp

formula ÏLTLp over AP of the form

ÏLTLp :=
fl

iœI

(Ïp,i(x) · Ïf,i(x)) (2)

such that Ïp,i(x) is a pure past LTLp formula, Ïf,i(x) is a LTL formula, and for all infinite
words w over 2AP and i Ø 0,

w, i |= ÏLTLp i� w |= ÏFO(present Ω i). (3)

The LTLp formula ÏLTLp over AP corresponds to a hybrid CTLú
lp formula over AP . By

definition of the infinite words fiAP ,h, one can easily show by structural induction that for all
Kripke structures K , initial infinite paths fi, and positions i and h:

fiAP ,h, i |= ÏLTLp i� K , fi, i |= ÏLTLp(x Ω h). (4)

Thus by Equations (1), (3), and (4), we obtain that

L. Bozzelli, A. Molinari, A. Montanari, A. Peron, and P. Sala XX:19

Ï and ÏLTLp are congruent.

Since in Equation (2), for each i œ I, Ïp,i(x) is a pure past LTLp formula over AP , ÷Ïp,i(x)
is congruent to Ïp,i(x). Hence we obtain that:

(F≠x) · ÷Ï(x) is congruent to (F≠x) ·
x

iœI(Ïp,i(x) · ÷Ïf,i(x)).

Since Ïf,i(x) is a simple hybrid CTLú
lp formula with respect to x, and ÷x (resp., ÷¬x) is

congruent to x (resp., ¬x), by applying Lemma 28 we obtain that (F≠x) · ÷Ï(x) is congruent
to a formula of the form (F≠x) ·

x

iœI(Âp,i(x) · ÷Âi), where Âi is a CTLú formula and
Âp,i(x) corresponds to a pure past LTLp formula over the set of atomic propositions given by
AP = AP fi ÷SubF(Ï) fi {x}. This concludes the proof of the lemma. J

By applying Lemma 29, we deduce the following corollary.

I Corollary 30. Let (F≠x) · ÷Ï(x) (resp., ÷Ï) be a well-formed formula (resp., well-formed
sentence) of hybrid CTLú

lp. Then there exists a finite set H of CTLú formulas of the form ÷Â,
such that (F≠x) · ÷Ï(x) (resp., ÷Ï) is congruent to a well-formed formula of hybrid CTLú

lp

which is a Boolean combination of CTLú formulas and formulas that correspond to pure past
LTLp formulas over the set of atomic propositions given by AP fi H fi {x} (resp., AP fi H).

Proof. We focus on well-formed formulas of the form (F≠x) · ÷Ï(x) (the case of well-formed
sentences of the form ÷Ï is similar). The proof is by induction on the nesting depth of the
path quantifier ÷ in Ï(x). In the base case ÷SubF(Ï) = ÿ, thus we can apply Lemma 29,
and the result follows with H = ÿ. As for the inductive step, let us consider the non-empty
set of formulas ÷SubF(Ï). Let ÷Â œ ÷SubF(Ï). Since (F≠x) · ÷Ï(x) is well-formed, either
Â is a sentence, or Â has a unique free variable y and ÷Â(y) occurs in Ï(x) in the context
(F≠y) · ÷Â(y). Assume that the latter case holds (the former is similar). By the inductive
hypothesis we can apply the corollary to (F≠y) · ÷Â(y). Hence there exists a finite set H Õ

of CTLú formulas of the form ÷◊, such that (F≠y) · ÷Â(y) is congruent to a well-formed
formula of hybrid CTLú

lp, say ›(y), which is a Boolean combination of CTLú formulas and
formulas that correspond to pure past LTLp formulas over the set of atomic propositions
given by AP fi H Õ fi{y}. By replacing each occurrence of (F≠y)·÷Â(y) in Ï(x) with ›(y), and
repeating the procedure for all the formulas in ÷SubF(Ï), we obtain a well-formed formula of
hybrid CTLú

lp of the form (F≠x) · ÷◊(x) which is congruent to (F≠x) · ÷Ï(x) (notice that the
congruence relation is closed under substitution) and such that ÷SubF(◊) consists of CTLú

formulas. At this point we can apply Lemma 29 and the result follows. J

I Proposition 7. Well-formed hybrid CTLú
lp has the same expressiveness as CTLú.

Proof. Let Ï be a well-formed sentence of hybrid CTLú
lp. We construct a CTLú formula

which is equivalent to Ï, hence the result follows. Clearly Ï is equivalent to ¬÷¬Ï. Thus,
since ¬÷¬Ï is well-formed, by applying Corollary 30, one can convert ¬÷¬Ï into a congruent
hybrid CTLú

lp formula which is a Boolean combination of CTLú formulas and formulas ◊
which can be seen as pure past LTLp formulas over the set of propositions AP fi H , where H
is a set of CTLú formulas of the form ÷Â. Since the past temporal modalities in such LTLp

formulas ◊ refer to the initial position of the initial infinite paths, one can replace ◊ with an
equivalent CTLú formula f(◊), where the mapping f is inductively defined as follows:

f(p) = p for all p œ AP fi H ;
f is homomorphic w.r.t. the Boolean connectives;
f(X≠◊) = ‹ and f(◊

1

U≠◊
2

) = f(◊
2

).

XX:20 Interval vs. Point Temporal Logic Model Checking: an Expressiveness Comparison

At the end we have obtained a CTLú formula which is equivalent to ¬÷¬Ï, and the proof is
complete. J

By an easy adaptation of the proof of Proposition 7 in which we now exploit the well-known
separation theorem for LTLp over finite words [8], we establish the following result.
I Proposition 8. The set of well-formed sentences of finitary hybrid CTLú

lp has the same
expressiveness as finitary CTLú.

D Proof of Lemma 21

I Lemma 21. For all n Ø 1 and balanced HS formulas Â s.t. |Â| Æ n, Kn |=st Â i� Mn |=st Â.

Fix n Ø 1. In order to prove Lemma 21 for n, we need some additional definitions. Let
fl be a track of Kn (note that Kn and Mn feature the same tracks). By construction fl is of
the form flÕ · flÕÕ, where flÕ is a (possibly empty) track visiting only states where p does not
hold, and flÕÕ is a (possibly empty) track visiting only the state t, where p holds. We say that
flÕ (resp., flÕÕ) is the ÿ-part (resp., p-part) of fl. Let Nÿ(fl), Np(fl), and Dp(fl) be the natural
numbers defined as follows:

Nÿ(fl) = |flÕ| (the length of the ÿ-part of fl);
Np(fl) = |flÕÕ| (the length of the p-part of fl);
Dp(fl) = 0 if Np(fl) > 0 (i.e., lst(fl) = t); otherwise Dp(fl) is the length of the minimal
track starting from lst(fl) and leading to s

2n. Notice that by construction, Dp(fl) is well
defined and 0 Æ Dp(fl) Æ 2n + 1.

By construction, the following property holds.
I Remark. For all tracks fl and flÕ of Kn, if Dp(fl) = Dp(flÕ), then lst(fl) = lst(flÕ).

Now, for each h œ [1, n], we introduce the notion of h-compatibility between tracks of
Kn. Intuitively, this notion allows us to capture the properties which make two tracks
indistinguishable under the state-based semantics by means of balanced HS formulas of size
at most h.

I Definition 31 (h-compatibility). Let h œ [1, n]. Two tracks fl and flÕ of Kn are h-compatible
if the following conditions hold:

Np(fl) = Np(flÕ);
either Nÿ(fl) = Nÿ(flÕ), or Nÿ(fl) Ø h and Nÿ(flÕ) Ø h;
either Dp(fl) = Dp(flÕ), or Dp(fl) Ø h and Dp(flÕ) Ø h.

We denote by R(h) the binary relation over the set of tracks of Kn such that (fl, flÕ) œ R(h) i�
fl and flÕ are h-compatible. Notice that R(h) is an equivalence relation and R(h) ™ R(h ≠ 1)
for all h œ [2, n].

By construction, the following lemma evidently holds.

I Lemma 32. For every track fl of Kn starting from s
0

(resp., s
1

), there exists a track flÕ of
Kn starting from s

1

(resp., s
0

) such that (fl, flÕ) œ R(n).

Then we deduce some crucial properties of the equivalence relation R(h).

I Lemma 33. Let h œ [2, n] and (fl, flÕ) œ R(h). The following properties hold:
1. for each proper prefix ‡ of fl, there exists a proper prefix ‡Õ of flÕ such that (‡, ‡Õ) œ R(Â h

2

Ê);
2. for each track of the form fl · ‡, where ‡ is not empty, there exists a track of the form

flÕ · ‡Õ such that ‡Õ is not empty and (fl · ‡, flÕ · ‡Õ) œ R(Â h
2

Ê);

L. Bozzelli, A. Molinari, A. Montanari, A. Peron, and P. Sala XX:21

3. for each proper su�x ‡ of fl, there exists a proper su�x ‡Õ of flÕ such that (‡, ‡Õ) œ R(h≠1);
4. for each track of the form ‡ · fl, where ‡ is not empty, there exists a track of the form

‡Õ · flÕ such that ‡Õ is not empty and (‡ · fl, ‡Õ · flÕ) œ R(h).

Proof. We prove Properties 1 and 2. Properties 3 and 4 easily follow by construction and
by definition of h-compatibility.

Proof of Property 1. We distinguish the following cases:
1. Dp(fl) < h and Nÿ(fl) < h. Since (fl, flÕ) œ R(h) and h œ [1, n], by construction we easily

deduce that fl = flÕ.
2. Dp(fl) Ø h. Since (fl, flÕ) œ R(h), Dp(flÕ) Ø h, Np(flÕ) = Np(fl) = 0, and either Nÿ(flÕ) =

Nÿ(fl), or Nÿ(fl) Ø h and Nÿ(flÕ) Ø h. In both cases, by construction it easily follows
that for each proper prefix ‡ of fl, there exists a proper prefix ‡Õ of flÕ such that (‡, ‡Õ) œ
R(h ≠ 1) ™ R(Â h

2

Ê).
3. Dp(fl) < h and Nÿ(fl) Ø h. Since (fl, flÕ) œ R(h), we have that Dp(flÕ) = Dp(fl) (hence

lst(fl) = lst(flÕ)), Np(flÕ) = Np(fl), and Nÿ(flÕ) Ø h. Let ‡ be a proper prefix of fl. We
distinguish the following three subcases:
a. Nÿ(‡) < Â h

2

Ê. Since Nÿ(fl) Ø h, we have that Dp(‡) Ø Â h
2

Ê and |‡| = Nÿ(‡). Since
Nÿ(flÕ) Ø h, by taking the proper prefix ‡Õ of flÕ having length Nÿ(‡), we obtain that
(‡, ‡Õ) œ R(Â h

2

Ê).
b. Nÿ(‡) Ø Â h

2

Ê and Dp(‡) Ø Â h
2

Ê. By taking the prefix ‡Õ of flÕ of length Â h
2

Ê, we get
that (‡, ‡Õ) œ R(Â h

2

Ê).
c. Nÿ(‡) Ø Â h

2

Ê and Dp(‡) < Â h
2

Ê. Since lst(fl) = lst(flÕ), Np(flÕ) = Np(fl), and Nÿ(flÕ) Ø h,
there exists a proper prefix ‡Õ of flÕ such that lst(‡Õ) = lst(‡), Np(‡Õ) = Np(‡), and
Nÿ(‡Õ) Ø Â h

2

Ê. Hence (‡, ‡Õ) œ R(Â h
2

Ê).
Thus in all the cases Property 1 holds.

Proof of Property 2. Let (fl, flÕ) œ R(h) and ‡ be a non-empty track such that fl · ‡ is a track.
We distinguish the following cases:
1. Dp(fl) < h. Since (fl, flÕ) œ R(h), we have that Dp(flÕ) = Dp(fl), Np(fl) = Np(flÕ), and

either Nÿ(flÕ) = Nÿ(fl), or Nÿ(fl) Ø h and Nÿ(flÕ) Ø h. Hence lst(fl) = lst(flÕ) and by
taking ‡Õ = ‡, we obtain that (fl · ‡, flÕ · ‡Õ) œ R(h) ™ R(Â h

2

Ê).
2. Dp(fl) Ø h and Dp(‡) < Â h

2

Ê. It follows that Nÿ(fl · ‡) Ø Â h
2

Ê. Since Dp(flÕ) Ø h, there
exists a track of the form flÕ · ‡Õ such that Dp(flÕ · ‡Õ) = Dp(fl · ‡), Np(flÕ · ‡Õ) = Np(fl · ‡),
and Nÿ(flÕ · ‡Õ) Ø Â h

2

Ê. Hence (fl · ‡, flÕ · ‡Õ) œ R(Â h
2

Ê).
3. Dp(fl) Ø h and Dp(‡) Ø Â h

2

Ê. Thus Dp(flÕ) Ø h. If Nÿ(fl · ‡) < Â h
2

Ê, then Nÿ(fl) = Nÿ(flÕ).
Therefore there exists a track of the form flÕ · ‡Õ such that Nÿ(flÕ · ‡Õ) = Nÿ(fl · ‡) and
Dp(‡Õ) Ø Â h

2

Ê. Otherwise Nÿ(fl · ‡) Ø Â h
2

Ê and there exists a track of the form flÕ · ‡Õ such
that Nÿ(flÕ · ‡Õ) Ø Â h

2

Ê and Dp(‡Õ) = Â h
2

Ê. In both cases, (fl · ‡, flÕ · ‡Õ) œ R(Â h
2

Ê).
Thus Property 2 holds, concluding the proof of the lemma. J

By applying Lemma 33 we deduce the following corollary which, together with Lemma 32,
provides a proof of Lemma 21 (recall that Kn and Mn di�er only in the initial state, which is
s

0

for Kn and s
1

for Mn).

I Corollary 34. Let Â be a balanced HS formula such that |Â| Æ n and (fl, flÕ) œ R(|Â|).
Then Kn, fl |= Â i� Kn, flÕ |= Â.

Proof. The proof is by induction on |Â|. The cases for the Boolean connectives directly
follow from the inductive hypothesis and the fact that R(h) ™ R(k) for all h, k œ [1, n] such
that h Ø k. For the other cases, we proceed as follows:

XX:22 Interval vs. Point Temporal Logic Model Checking: an Expressiveness Comparison

Â = p: since (fl, flÕ) œ R(1), fl visits a state where p does not hold i� flÕ visits a state
where p does not hold. Hence the result follows.
Â = ÈBÍ◊ (resp., Â = ÈBÍ◊): since Â is balanced, ◊ is of the form ◊ = ◊

1

· ◊
2

, where
|◊

1

| = |◊
2

|. Hence |◊
1

|, |◊
2

| Æ Â |Â|
2

Ê. We focus on the case Â = ÈBÍ◊ (being the case
Â = ÈBÍ◊ similar). Since R(h) is an equivalence relation for each h œ [1, n], it su�ces to
show that Kn, fl |= Â implies Kn, flÕ |= Â. Let Kn, fl |= Â. Hence there exists a proper prefix
‡ of fl such that Kn, ‡ |= ◊i for i = 1, 2. Since (fl, flÕ) œ R(|Â|), by applying Lemma 33(1),
there exists a proper prefix ‡Õ of flÕ such that (‡, ‡Õ) œ R(Â |Â|

2

Ê). Since R(Â |Â|
2

Ê) ™ R(|◊i|)
for i = 1, 2, by applying the inductive hypothesis we get that Kn, ‡Õ |= ◊i for i = 1, 2.
Hence Kn, flÕ |= Â.
Â = ÈEÍ◊ (resp., Â = ÈEÍ◊): we apply Lemma 33(3) (resp., Lemma 33(4)) and the
inductive hypothesis. J

