
University of Udine

Department of Mathematics and Computer Science

PREPRINT

A Model Checking Procedure for Interval Temporal
Logics based on Track Representatives

Alberto Molinari, Angelo Montanari e Adriano Peron

Preprint nr.: 2/2015

Reports available from:
http://www.dimi.uniud.it/preprints

A Model Checking Procedure for Interval

Temporal Logics based on Track

Representatives

Alberto Molinari and Angelo Montanari

Department of Mathematics and
Computer Science

University of Udine
Email: molinari.alberto@gmail.com;

angelo.montanari@uniud.it

Adriano Peron

Department of Electronic Engineering and
Information Technology

University of Napoli
Email: adrperon@unina.it

Abstract
Model checking is commonly recognised as the most e�ective tool in system verification.

While it has been systematically investigated in the context of classical, point-based temporal
logics, it is still largely unexplored in the interval logic setting. Recently, a non-elementary
model checking algorithm for Halpern and Shoham’s modal logic of time intervals HS,
interpreted over finite Kripke structures, has been proposed, together with a proof of the
EXPSPACE-hardness of the problem. In this paper, we devise an EXPSPACE model checking
procedure for two meaningful HS fragments. It exploits a suitable contraction technique, that
allows one to replace long enough tracks of a Kripke structure by equivalent shorter ones.

I. Introduction
Model checking is commonly recognised as the most e�ective tool in system verification. Given

a formal specification of the desired properties of a system and a model of its behaviour, model
checking algorithms allow one to verify the former against the latter [1]. While the model checking
problem has been systematically investigated in the context of classical, point-based temporal
logics, it is still largely unexplored in the interval logic setting.

Interval temporal logics have been proposed as a more expressive formalism for temporal
representation and reasoning than standard point-based ones [2]–[4]. On the positive side,
expressiveness of interval temporal logics make them well suited for a number of applications
in a variety of fields, including formal verification [5], [6], computational linguistics [7], and
planning [8]. On the negative side, undecidability is the rule and decidability the exception for
the satisfiability problem of interval temporal logics. Moreover, in the few cases of decidable
interval logics, the standard proof machinery, like Rabin’s theorem, is usually not applicable.

A prominent position among interval temporal logics is occupied by Halpern and Shoham’s
modal logic of time intervals HS[A, A, B, B, E, E] (HS, for short) [2]. HS features one modality
for each of the 13 possible ordering relations between pairs of intervals (the so-called Allen’s
relations [9]), apart from the equality relation. In [2], it has been shown that the satisfiability
problem for HS interpreted over all relevant (classes of) linear orders is highly undecidable. Since
then, a lot of work has been done on the satisfiability problem for HS fragments, which showed
that undecidability rules over them [10]–[12]. However, meaningful exceptions exist, including
the interval logic of temporal neighbourhood and the temporal logic of sub-intervals [13]–[16].

In this paper, we focus our attention on the model checking problem for interval temporal
logics. While their satisfiability problem has been extensively and systematically investigated in
the literature [17], a little work has been done on model checking. In the classical formulation
of the model checking problem, systems are usually modelled as (finite) labelled state-transition

graphs, or Kripke structures, and point-based temporal logics are used to analyse, for each
path/track in a Kripke structure, how proposition letters labelling the states change from one
state to the next one along the path. To check interval properties of computations, one needs
to collect information about states into computation stretches. This amounts to interpret each
finite path of a Kripke structure as an interval, and to suitably define its labelling on the basis
of the labelling of the states that compose it.

In [18], [19], Lomuscio and Michaliszyn address the model checking problem for epistemic
extensions of some HS fragments. In [18], they focus their attention on the fragment HS[B, E, D]
extended with epistemic modalities. They consider a restricted form of model checking, which
verifies the given specification against a single (finite) initial computation interval (not all possible
initial computation intervals), and prove that it is a PSPACE-complete problem. Moreover, they
show that the problem for the purely temporal fragment of the logic is in PTIME. These results
do not come as a surprise as they trade expressiveness for e�ciency: modalities B, D, and E
allow one to access only sub-intervals of the initial one, whose number is quadratic in the length
(number of states) of the initial interval. In [19], they show that the picture drastically changes
with other HS fragments, that allow one to access infinitely many tracks/intervals. In particular,
they prove that the model checking problem for the HS fragment HS[A, B, L] extended with
epistemic modalities is decidable with a non-elementary upper bound.

In [20], [21], Montanari et al. outline a general characterization of the model checking problem
for full HS, interpreted over finite Kripke structures (under the homogeneity assumption [22]).
Their semantic assumptions di�er from those made in [18], making it di�cult to compare the
two research contributions. In both cases, formulas of interval temporal logic are evaluated
over finite paths/tracks obtained from the unravelling of a finite Kripke structure. However,
in [20] a proposition letter holds over an interval (track) if and only if it holds over all its
states (homogeneity principle), while in [18] truth of proposition letters is defined over pairs of
states (the endpoints of tracks/intervals). In [20], the authors introduce the basic elements of the
picture, namely, the interpretation of HS formulas over (abstract) interval models, the mapping
of finite Kripke structures into (abstract) interval models, the notion of track descriptor, and a
small model theorem proving the non-elementary decidability of the model checking problem for
full HS against finite Kripke structures. In [21], Molinari et al. work out such a proposal in all
its technical details, and they prove that the problem is EXPSPACE-hard.

In this paper, we prove that the model checking problem for two large HS fragments, namely,
HS[A, A, B, B, E] and HS[A, A, E, E, B], is in EXPSPACE. Moreover, we prove that it is NEXP-
hard, provided that a succinct encoding of formulas is used (otherwise, we can only give an
NP-hardness result).

The rest of the paper is organised as follows. In Section II, we introduce the considered
fragments of HS, and we provide some background knowledge. In Section III we introduce the
key notion of descriptor sequence for a track of a finite Kripke structure, and we exploit it
to define an indistinguishability (equivalence) relation over tracks. In Section IV, we prove a
small model theorem, showing that we can select a track representative of bounded length from
each equivalence class. In Section V, we outline a model checking procedure, and we analyse
its soundness, completeness, and complexity. In addition, we provide a lower bound to the
complexity of the problem. Conclusions provide a short assessment of the work and outline
future work directions. Due to space limitations, most of the proofs have been moved to an
appendix.

TABLE I
Allen’s interval relations and corresponding HS modalities.

Allen’s relation HS Definition w.r.t. interval structures Example
x

y

v z

v z

v z

v z

v z

v z

meets ÈAÍ [x, y]RA[v, z] ≈∆ y = v

before ÈLÍ [x, y]RL[v, z] ≈∆ y < v

started-by ÈBÍ [x, y]RB [v, z] ≈∆ x = v · z < y

finished-by ÈEÍ [x, y]RE [v, z] ≈∆ y = z · x < v

contains ÈDÍ [x, y]RD[v, z] ≈∆ x < v · z < y

overlaps ÈOÍ [x, y]RO[v, z] ≈∆ x < v < y < z

II. Background Knowledge
A. The interval temporal logic HS

An interval algebra to reason about intervals and their relative order was first proposed by
Allen in [9]; then, a systematic logical study of interval representation and reasoning was done
by Halpern and Shoham, who introduced the interval temporal logic HS featuring one modality
for each Allen interval relation [2]. Table I depicts 6 of the 13 possible binary ordering relations
between a pair of intervals, together with the corresponding HS (existential) modality. The other
7 are the equality and the 6 inverse relations (given a generic binary relation R , the inverse
relation R is such that bR a if and only if aR b).

The language of HS features a set of proposition letters AP , the Boolean connectives ¬ and ·,
the logical constants € and ‹ (respectively true and false), and a temporal modality for each of
the (non trivial) Allen’s relations, namely, ÈAÍ, ÈLÍ, ÈBÍ, ÈEÍ, ÈDÍ, ÈOÍ, ÈAÍ, ÈLÍ, ÈBÍ, ÈEÍ, ÈDÍ, and
ÈOÍ,

HS formulas are defined by the following grammar:

Â ::= p | ¬Â | Â · Â | ÈXÍÂ | ÈXÍÂ, with p œ AP

In the following, we will make use of the standard abbreviations of propositional logic. Moreover,
for all X, dual universal modalities [X]Â and [X]Â are respectively defined as ¬ÈXÍ¬Â and
¬ÈXÍ¬Â.

We will assume the strict semantics of HS: only intervals made of at least two points are
allowed (no point-intervals). Under this assumption, all HS modalities can be expressed in terms
of modalities ÈAÍ, ÈBÍ, ÈEÍ, and the transposed modalities ÈAÍ, ÈBÍ, ÈEÍ as follows:

ÈLÍ Â © ÈAÍ ÈAÍ Â ÈLÍ Â © ÈAÍ ÈAÍ Â
ÈDÍ Â © ÈBÍ ÈEÍ Â © ÈEÍ ÈBÍ Â ÈOÍ Â © ÈEÍ ÈBÍ Â
ÈDÍ Â © ÈBÍ ÈEÍ Â © ÈEÍ ÈBÍ Â ÈOÍ Â © ÈBÍ ÈEÍ Â

Given any subset of Allen’s relations {X1, · · · , X
n

}, we denote by HS[X1, · · · , X
n

] the
fragment of HS that features modalities X1, · · · , X

n

only.
HS can be viewed as a multi-modal logic with six primitive modalities, namely, ÈAÍ, ÈBÍ,

ÈEÍ, and their inverses. Accordingly, HS semantics can be defined over a multi-modal Kripke
structure, here called abstract interval model, in which (strict) intervals are treated as atomic
objects and Allen’s relations as simple binary relations between pairs of intervals.

Definition 1: An abstract interval model is a tuple A = (AP , I, AI, BI, EI, ‡), where:
• AP is a finite set of proposition letters;
• I is a possibly infinite set of atomic objects (worlds);
• AI, BI, EI are three binary relations over I;

• ‡ : I ‘æ 2AP is a (total) labeling function, which assigns a set of proposition letters to each
world.

Intuitively, in the interval setting, I is a set of intervals, AI, BI, and EI are interpreted as Allen’s
interval relations A (meets), B (started-by), and E (finished-by), respectively, and ‡ assigns to
each interval the set of proposition letters that hold over it.

Given an abstract interval model A = (AP , I, AI, BI, EI, ‡) and an interval I œ I, the truth of
an HS formula over I is defined by structural induction on the formula as follows:

• A, I |= p i� p œ ‡(I), for any proposition letter p œ AP ;
• A, I |= ¬Â i� it is not true that A, I |= Â;
• A, I |= Â ‚ „ i� A, I |= Â or A, I |= „;
• A, I |= ÈXÍÂ, for X œ {A, B, E}, i� there exists J œ I such that I XI J and A, J |= Â;
• A, I |= ÈXÍÂ, for X œ {A, B, E}, i� there exists J œ I such that J XI I and A, J |= Â.
Satisfiability and validity are defined in the usual way: an HS formula Â is satisfiable if there

exists an interval model A and a world (interval) I such that A, I |= Â. Moreover, Â is valid,
denoted as |= Â, if A, I |= Â for all worlds (intervals) I of any interval model A.

B. Kripke structures and abstract interval models
Finite state systems are usually modelled as finite Kripke structures. In the following, we

define a mapping from Kripke structures to abstract interval models that makes it possible to
specify properties of systems by means of HS formulas.

Definition 2: (Finite Kripke structure) A finite Kripke structure K is a tuple (AP , W, ”, µ, w0),
where AP is a set of proposition letters, W is a finite set of states, ” ™ W ◊ W is a left-total
relation between pairs of states, µ : W ‘æ 2AP a total labelling function, and w0 œ W is the
initial state.
For all w œ W , µ(w) captures the set of proposition letters that hold at that state, while ” is
the transition relation that constrains the evolution of the system over time.

Example 1: Figure 1 below depicts a Kripke structure K
Equiv

with two states (the initial
state is identified by a double circle). Formally, K

Equiv

is defined by the following quintuple:
({p, q}, {v0, v1}, {(v0, v0), (v0, v1), (v1, v0), (v1, v1)}, µ, v0), where µ(v0) = {p} and µ(v1) = {q}.

v0
p

v1
q

Fig. 1. The Kripke structure KEquiv .

Definition 3: (Track over K) A track fl over a finite Kripke structure K = (AP , W, ”, µ, w0) is
a finite sequence of states v0 · · · v

n

, with n Ø 1, such that for all i œ {0, · · · , n≠1}, (v
i

, v
i+1) œ ”.

Let TrkK be the (possibly infinite) set of all tracks over a finite Kripke structure K . For any
track fl = v0 · · · v

n

œ TrkK , we define: |fl| = n + 1, fl(i) = v
i

, states(fl) = {v0, · · · , v
n

} ™ W ,
intstates(fl) = {v1, · · · , v

n≠1} ™ W , fst(fl) = v0 and lst(fl) = v
n

; moreover fl(i, j) = v
i

· · · v
j

is a
subtrack of fl for 0 Æ i < j Æ |fl| ≠ 1. Finally, Pref(fl) = {fl(0, i) | 1 Æ i Æ |fl| ≠ 2} is the set of all
proper prefixes of fl, and Su�(fl) = {fl(i, |fl| ≠ 1) | 1 Æ i Æ |fl| ≠ 2} is the set of all proper su�xes
of fl. Notice that the length of tracks, prefixes, and su�xes is greater than 1, as they will be
mapped into strict intervals.

If fst(fl) = w0, where w0 is the initial state of K , fl is said to be an initial track. In the following,
we will sometimes denote by fln the track obtained by concatenating n copies of a given track fl.

An abstract interval model (over TrkK) can be naturally associated with a finite Kripke
structure by interpreting every track as an interval bounded by its first and last states.

Definition 4: (Abstract interval model induced by K) The abstract interval model induced
by a finite Kripke structure K = (AP , W, ”, µ, w0) is the abstract interval model AK =
(AP , I, AI, BI, EI, ‡), where:

• I = TrkK ,
• AI = {(fl, flÕ) œ I ◊ I | lst(fl) = fst(flÕ)},
• BI = {(fl, flÕ) œ I ◊ I | flÕ œ Pref(fl)},
• EI = {(fl, flÕ) œ I ◊ I | flÕ œ Su�(fl)}, and
• ‡ : I ‘æ 2AP is such that for all fl œ I,

‡(fl) =
‹

wœstates(fl)
µ(w).

In Definition 4, relations AI, BI, and EI are interpreted as Allen’s interval relations A, B, and
E, respectively. Moreover, according to the definition of ‡, a proposition letter p œ AP holds
over fl = v0 · · · v

n

if and only if it holds over all the states v0, · · · , v
n

of fl. This conforms to the
homogeneity principle, according to which a proposition letter holds over an interval if and only
if it holds over all of its subintervals.

Satisfiability of an HS formula over a finite Kripke structure can be given in terms of induced
abstract interval models.

Definition 5: (Satisfiability of HS formulas over Kripke structures) Let K be a finite Kripke
structure, fl be a track in TrkK , Â be an HS formula. We say that the pair (K , fl) satisfies Â,
denoted by K , fl |= Â, if and only if it holds that AK , fl |= Â.
We are now ready to formally state the model checking problem for HS over finite Kripke
structures.

Definition 6: (Model checking) Let K be a finite Kripke structure and Â be an HS formula.
We say that K models Â, denoted by K |= Â, if and only if

for all initial tracks fl œ TrkK , it holds that K , fl |= Â.

Here are some examples of meaningful properties of tracks that can be expressed in HS. To
start with, we observe that the formula [B]‹ can be used to select all and only the tracks of
length 2. Indeed, given any fl with |fl| = 2, independently of K , it holds that K , fl |= [B]‹,
because fl has not (strict) prefixes. On the other hand, it holds that K , fl |= ÈBÍ € if (and only
if) |fl| > 2. Modality ÈBÍ (or, equivalently, ÈEÍ) can be used to constrain the length of an interval
to be greater than, less than, or equal to any value k. Let us denote k nested applications of ÈBÍ
by ÈBÍk. It holds that K , fl |= ÈBÍk € if and only if |fl| Ø k + 2. Analogously, K , fl |= [B]k‹ if and
only if |fl| Æ k + 1. Let ¸(k) be a shorthand for [B]k≠1‹ · ÈBÍk≠2 €. It holds that K , fl |= ¸(k) if
and only if |fl| = k. Modalities ÈBÍ and ÈEÍ can also be exploited to distinguish between tracks
encompassing a di�erent number of iterations of a given loop. Finally, modalities ÈAÍ and ÈAÍ
can be used to distinguish between tracks that start or end at di�erent states.

C. The notion of B
k

-descriptor
For any given finite Kripke structure K , one can find a corresponding induced abstract interval

model AK , featuring one interval for each track of K . Since K have loops (each state must have at
least one successor), the number of its tracks, and thus the number of intervals of AK , is infinite.
In [21], given a finite Kripke structure and an HS formula Ï, the authors show how to obtain a
finite representation for each (possibly infinite) set of tracks which are equivalent with respect to
satisfiability of HS formulas of the the same structural complexity as Ï. By making use of such
a representation, they prove that the model checking problem for (full) HS is decidable (with a
non-elementary upper bound) and it is EXPSPACE-hard if a suitable encoding of HS formulas
is exploited [21]. In this paper, we restrict our attention to the fragment HS[A, A, B, B, E] (and

the symmetric fragment HS[A, A, E, E, B]) and we show that the model checking problem for
it has a lower complexity.

We now start with the definition of some basic notions. The first one is the notion of B-nesting
depth of an HS formula.

Definition 7: (B-nesting depth of an HS[A, A, B, B, E] formula) Let Â be an HS[A, A, B, B, E]
formula. The B-nesting depth of Â, denoted by NestB(Â), is defined by induction on the structure
complexity of the formula as follows:

• NestB(p) = 0, for any proposition letter p œ AP ;
• NestB(¬Â) = NestB(Â);
• NestB(Â · „) = max{NestB(Â), NestB(„)};
• NestB(ÈBÍ Â) = 1 + NestB(Â);
• NestB(ÈXÍ Â) = NestB(Â), for X œ {A, A, B, E}.
Making use of the notion of B-nesting depth of a formula, we can define a relation of k-

equivalence over tracks.
Definition 8: Let K be a finite Kripke structure and fl and flÕ be two tracks in TrkK . We

say that fl and flÕ are k-equivalent if and only if, for every HS[A, A, B, B, E] formula Â, with
NestB(Â) = k, K , fl |= Â if and only if K , flÕ |= Â.
It can be easily proved that k-equivalence propagates downwards.

Proposition 1: Let K be a finite Kripke structure and fl and flÕ be two tracks in TrkK . If fl and
flÕ are k-equivalent, then they are h-equivalent, for all 0 Æ h Æ k.

We are now ready to introduce the notion of descriptor for a track of a Kripke structure,
which will play a fundamental role hereafter.

Definition 9: Let K be a finite Kripke structure, fl be a track in TrkK , and k œ N. The B
k

-
descriptor for fl is a labelled tree of depth k, D = (V, E, ⁄), where V is a finite set of vertices,
E ™ V ◊ V is a set of edges, and ⁄ : V ‘æ W ◊ 2W ◊ W is a node labelling function, inductively
defined as follows:

• for k = 0, the B
k

-descriptor for fl is the tree D = (root(D), ÿ, ⁄), where ⁄(root(D)) =
(fst(fl), intstates(fl), lst(fl));

• for k > 0, the B
k

-descriptor for fl is the tree D = (V, E, ⁄), where ⁄(root(D)) =
(fst(fl), intstates(fl), lst(fl)), which satisfies the following conditions:

1) for each prefix flÕ of fl, there exists v œ V such that (root(D), v) œ E and the subtree
rooted in v is the B

k≠1-descriptor for flÕ;
2) for each vertex v œ V such that (root(D), v) œ E, there exists a prefix flÕ of fl such that

the subtree rooted in v is the B
k≠1-descriptor for flÕ;

3) for all pairs of edges (root(D), vÕ), (root(D), vÕÕ) œ E, if the subtree rooted in vÕ is
isomorphic to the subtree rooted in vÕÕ, then vÕ = vÕÕ (here and in the following, we
write subtree for maximal subtree).

Condition 3 of Definition 9 simply states that no two subtrees, whose roots are siblings, can be
isomorphic. A B0-descriptor D for a track consists of its root only, which is denoted by root(D).
A label of a node will be referred to as a descriptor element.

Basically, for any k Ø 0, the label of the root of the B
k

-descriptor D for fl is the triple
(fst(fl), intstates(fl), lst(fl)). Then each prefix flÕ of fl is associated with some subtree, whose root
is labelled with (fst(flÕ), intstates(flÕ), lst(flÕ)) and it is a child of the root of D. Such a construction
is then iteratively applied to the children of the root until either depth k is reached or a track
of length 2 is being considered on a node.

Hereafter, two descriptors will be considered equal up to isomorphism. The following lemma
holds.

Lemma 1: For all k œ N, there exists a finite number of possible B
k

-descriptors.

Proof: For k = 0, there are at most |W | · 2|W | · |W | pairwise distinct B0-descriptors. As for
the inductive step, let us assume h to be the number of pairwise distinct B-descriptors of depth
at most k. The number of B

k+1-descriptors is at most |W | · 2|W | · |W | · 2h (there are at most
|W | · 2|W | · |W | possible choices for the root, which can have any subset of the h B-descriptors of
depth at most k as subtrees). Moreover, by the König’s lemma, they are all finite, because their
depth is k + 1 and the root has a finite number of children (no two subtrees of the root can be
isomorphic).
Lemma 1 provides an upper bound to the number of distinct B

k

-descriptors, and thus to the
number of nodes of each B

k+1-descriptor, for k œ N, which is not elementary with respect to
|W | and k. As a matter of fact, this is a very rough upper bound, as some descriptors may not
have depth k + 1 and some others might not even fulfil the definition of descriptor.

In general, B-descriptors do not convey enough information to determine which track they
were built from (this will be clear shortly). However, they can be exploited to determine which
HS[A, A, B, B, E] formulas are satisfied by the track from which they have been built: to check
satisfiability of proposition letters, they keep information about initial, final, and internal states
of the track; to deal with ÈAÍ Â and ÈAÍ Â formulas they store the final and initial states of the
track; to deal with ÈBÍ Â formulas, the B-descriptor keeps information about all the prefixes of
the track, and no additional information is needed for ÈBÍ Â and ÈEÍ Â formulas.

Example 2: In Figure 2, we show the B2-descriptor for the track fl = v0v1v0v0v0v0v1 of K
Equiv

.
It is worth noticing that there exist two distinct prefixes of track fl, that is, the tracks flÕ =
v0v1v0v0v0v0 and flÕÕ = v0v1v0v0v0, which have the same B1-descriptor. Since, according to
Definition 9, no tree can occur more than once as a subtree of the same node (in this example,
the root), in the B2-descriptor for fl prefixes flÕ and flÕÕ are represented by the same tree (the
first subtree of the root on the left). In general, it holds that the root of a descriptor for a track
with h proper prefixes does not necessarily have h children.

(v0, {v0, v1}, v1)

(v0, ÿ, v1)(v0, {v1}, v0)

(v0, ÿ, v1)

(v0, {v0, v1}, v0)

(v0, ÿ, v1)(v0, {v1}, v0)

(v0, {v0, v1}, v0)

(v0, ÿ, v1)(v0, {v1}, v0)(v0, {v0, v1}, v0)

Fig. 2. The B2-descriptor for the track v0v1v0v0v0v0v1 of KEquiv .

We focus now our attention on the relationships between the tracks obtained from the
unravelling of a finite Kripke structure and their B

k

-descriptors. A key observation is that, even
though the number of tracks of a finite Kripke structure K is infinite, for any k œ N, the set of
B

k

-descriptors for its tracks is finite. Thus, at least one B
k

-descriptor must be the B
k

-descriptor
of infinitely many tracks. B

k

-descriptors naturally induce an equivalence relation of finite index
over the set of tracks of a finite Kripke structure, that we call k-descriptor equivalence relation.

Definition 10: Let K be a finite Kripke structure, fl, flÕ be two tracks in TrkK , and k œ N. We
say that fl and flÕ are k-descriptor equivalent, denoted by fl ≥

k

flÕ, if and only if the B
k

-descriptors
for fl and flÕ coincide.

Theorem 1 will prove that, for any given pair of tracks fl, flÕ œ TrkK , if fl ≥
k

flÕ, then fl and flÕ

are k-equivalent (see Definition 8). Since the set of B
k

-descriptors for the tracks of a finite Kripke
structure K is finite (or, equivalently, the equivalence relation ≥

k

has a finite index), there exists

always a finite number of B
k

-descriptors that “satisfy” an HS[A, A, B, B, E] formula Â with
NestB(Â) = k (this can be formally proved by a quotient construction [21]). This fact will be of
fundamental importance throughout the next section.

Before finally getting to Theorem 1, we need the following lemma.
Lemma 2: Let k œ N, K = (AP , W, ”, µ, v0) be a finite Kripke structure and fl1, flÕ

1, fl2, flÕ
2 be

tracks in TrkK such that: (lst(fl1), fst(flÕ
1)) œ ”, (lst(fl2), fst(flÕ

2)) œ ”, fl1 ≥
k

fl2 and flÕ
1 ≥

k

flÕ
2.

Then fl1 · flÕ
1 ≥

k

fl2 · flÕ
2.

The next propositions immediately follow:
Proposition 2: (Right extension) Let K = (AP , W, ”, µ, v0) be a finite Kripke structure, fl and

flÕ be two tracks in TrkK such that fl ≥
k

flÕ. If fl œ TrkK is such that (lst(fl), fst(fl)) œ ”, then
fl · fl ≥

k

flÕ · fl.
Proposition 3: (Left extension) Let K = (AP , W, ”, µ, v0) be a finite Kripke structure, fl and

flÕ be two tracks in TrkK such that fl ≥
k

flÕ. If fl œ TrkK is such that (lst(fl), fst(fl)) œ ”, then
fl · fl ≥

k

fl · flÕ.
The former proposition states that if we extend the two tracks fl and flÕ having the same B

k

-
descriptor “to the right” with the same track fl in TrkK , with (lst(fl), fst(fl)) œ ”, then the resulting
tracks fl · fl and flÕ · fl (both belonging to TrkK) have the same B

k

-descriptor as well. The latter
proposition symmetrically deals with the extension of the two tracks fl and flÕ “to the left”. In
these Propositions 2 and 3, |fl| Ø 2; however both continue to hold if |fl| = 1.

Theorem 1: Let K be a finite Kripke structure, fl and flÕ two tracks in TrkK , AK the abstract
interval model induced by K and Â a formula of HS[A, A, B, B, E] with NestB(Â) = k. If fl ≥

k

flÕ,
then AK , fl |= Â ≈∆ AK , flÕ |= Â.

The proof can be found in [21].

III. Clusters and descriptor element indistinguishability

A B
k

-descriptor provides a finite encoding for a possibly infinite set of tracks (the tracks
associated with that descriptor). Unfortunately, the representation of B

k

-descriptors as trees
labelled over descriptor elements is highly redundant. As an example, given any pair of subtrees
rooted in some children of the root of a descriptor, it is always the case that one of them is
a subtree of the other. This property immediately follows from the fact that the two subtrees
are associated with two (di�erent) prefixes of a track and one of them is necessarily a prefix of
the other. In practice, the size of the tree representation of B

k

-descriptors prevents their direct
use in model checking algorithms, and makes it di�cult to determine the intrinsic complexity
of B

k

-descriptors. In this section, we devise a more compact representation of B
k

-descriptors.
Each class of the k-descriptor equivalence relation is a set of k-equivalent tracks. For every such
class, we select a representative track whose length is (exponentially) bounded in both the size
of W (the set of states of the Kripke structure) and k.

In order to fix such a bound on the length of track representatives, we consider suitable ordered
sequences (possibly with repetitions) of descriptor elements of a B

k

-descriptor. Let us define the
descriptor sequence for a track as the ordered sequence of descriptor elements associated with the
prefixes of that track. In a descriptor sequence, descriptor elements can obviously be repeated.
We devise a criterion to avoid such repetitions whenever they cannot be distinguished by any
HS[A, A, B, B, E] formula of B-nesting depth up to k.

Definition 11: Let fl = v0v1 . . . v
n

be a track of a finite Kripke structure. The descriptor
sequence fl

ds

for fl is d0 . . . d
n≠1, where d

i

= fl
ds

(i) = (v0, intstates(v0 . . . v
i+1), v

i+1), for i œ
{0, . . . , n ≠ 1}. We denote the set of descriptor elements occurring in fl

ds

by DElm(fl
ds

) .
As an example, let us consider the finite Kripke structure of Figure 3 and the track fl =
v0v0v0v1v2v1v2v3v3v2v2. The descriptor sequence for fl is:

v0

v1

v2

v3

Fig. 3. An example of finite Kripke structure.

fl
ds

= (v0, ÿ, v0) (v0, {v0}, v0) (v0, {v0}, v1)

(v0, {v0, v1}, v2) (v0, {v0, v1, v2}, v1)(v0, {v0, v1, v2}, v2)

(v0, {v0, v1, v2}, v3) (v0, �, v3)(v0, �, v2)(v0, �, v2) , (*)

where � = {v0, v1, v2, v3} and

DElm(fl
ds

) = {(v0, ÿ, v0), (v0, {v0}, v0), (v0, {v0}, v1),
(v0, {v0, v1}, v2), (v0, {v0, v1, v2}, v1), (v0, {v0, v1, v2}, v2),

(v0, {v0, v1, v2}, v3), (v0, �, v2), (v0, �, v3)}.

To express the relationships between descriptor elements occurring in a descriptor sequence, we
introduce a binary relation Rt. Intuitively, given two descriptor elements dÕ and dÕÕ of a descriptor
sequence, it holds that dÕ Rt dÕÕ if dÕ and dÕÕ are the descriptor elements of two tracks flÕ and flÕÕ,
respectively, and flÕ is a prefix of flÕÕ.

Definition 12: Let fl
ds

be the descriptor sequence for a track fl and let dÕ = (v
in

, SÕ, vÕ
fin

) and
dÕÕ = (v

in

, SÕÕ, vÕÕ
fin

) be two descriptor elements in fl
ds

. Then,

dÕ Rt dÕÕ if (and only if) SÕ fi {vÕ
fin

} ™ SÕÕ.

It can be easily checked that the relation Rt is transitive. For all triple of descriptor elements
dÕ, dÕÕ, dÕÕÕ, if dÕ Rt dÕÕ and dÕÕ Rt dÕÕÕ, then SÕ fi {vÕ

fin

} ™ SÕÕ and SÕÕ fi {vÕÕ
fin

} ™ SÕÕÕ. It immediately
follows that SÕ fi {vÕ

fin

} ™ SÕÕÕ, and thus dÕ Rt dÕÕÕ.
It is worth noticing that Rt is neither an equivalence relation, nor a quasiorder,

since Rt is neither reflexive (e.g., (v0, {v0}, v1)�Rt(v0, {v0}, v1)), nor symmetric (e.g.,
(v0, {v0}, v1) Rt(v0, {v0, v1}, v1) and (v0, {v0, v1}, v1) �Rt(v0, {v0}, v1)), nor antisymmetric (e.g.,
(v0, {v1, v2}, v1) Rt(v0, {v1, v2}, v2) and (v0, {v1, v2}, v2) Rt (v0, {v1, v2}, v1), but the two elements
are distinct).

The following proposition shows that Rt associates descriptor elements of increasing prefixes
of the same track.

Proposition 4: Let fl
ds

be the descriptor sequence for the track fl = v0v1 · · · v
n

. Then,
fl

ds

(i) Rt fl
ds

(j) for all 0 Æ i < j < n.
Proof: fl

ds

(i) and fl
ds

(j) are associated with fl1 = v0 · · · v
i+1 and fl2 = v0 · · · v

i+1 · · · v
j+1,

respectively, and thus intstates(fl1) fi {v
i+1} ™ intstates(fl2).

We now introduce a distinction between two types of descriptor element.
Definition 13: A descriptor element (v

in

, S, v
fin

) is a Type-1 descriptor element if v
fin

/œ S,
while it is a Type-2 descriptor element if v

fin

œ S.
It can be easily checked that a descriptor element d = (v

in

, S, v
fin

) is of Type-1 if and only if Rt
is not reflexive in d: (i) if d�Rt d, then S fi{v

fin

} ”™ S, and thus v
fin

/œ S, and (ii) if v
fin

/œ S, then
d�Rt d. It follows that a Type-1 descriptor element cannot occur more than once in a descriptor

sequence. On the contrary, Type-2 descriptor elements may occur multiple times in a descriptor
sequence, and if a descriptor element occurs more than once, then it is necessarily of Type-2.

Proposition 5: If both dÕ Rt dÕÕ and dÕÕ Rt dÕ, with dÕ = (v
in

, SÕ, vÕ
fin

) and dÕÕ = (v
in

, SÕÕ, vÕÕ
fin

),
then vÕ

fin

œ SÕ, vÕÕ
fin

œ SÕÕ, and SÕ = SÕÕ, and thus both dÕ and dÕÕ are Type-2 descriptor elements.
Proof: It holds that SÕfi{vÕ

fin

} ™ SÕÕ ™ SÕÕfi{vÕÕ
fin

} ™ SÕ and SÕÕfi{vÕÕ
fin

} ™ SÕ ™ SÕfi{vÕ
fin

} ™
SÕÕ.

We are now ready to provide a general characterization of the descriptor sequence fl
ds

for a
track fl: fl

ds

is composed of some (maximal) subsequences, consisting of occurrences of Type-2
descriptor elements on which Rt is symmetric, separated by occurrences of Type-1 descriptor
elements. Such a characterization can be formalized by means of the notion of cluster.

Definition 14: A cluster C of (Type-2) descriptor elements is a maximal set of descriptor
elements {d1, . . . , d

s

} ™ DElm(fl
ds

) such that d
i

Rt d
j

and d
j

Rt d
i

for all i, j œ {1, . . . , s}.
Thanks to maximality, clusters are pairwise disjoint: if C and C Õ are distinct clusters, d œ C and
dÕ œ C Õ, either d Rt dÕ and dÕ�Rt d, or dÕ Rt d and d�Rt dÕ.

Definition 15: Let fl
ds

be a descriptor sequence and C be one of its clusters. The subsequence
of fl

ds

associated with C is a subsequence fl
ds

(i, j) such that fl
ds

(iÕ) œ C i� i Æ iÕ Æ j < |fl
ds

|.
As an example, with reference to the descriptor sequence for the track fl =
v0v0v0v1v2v1v2v3v3v2v2 of the finite Kripke structure in Figure 3, in (*) the subsequences
associated with clusters are surrounded by boxes. It is worth observing that:

• the descriptor elements of a cluster C are contiguous (they form a subsequence), that is,
occurrences of descriptor elements in C are never shu�ed with occurrences of descriptor
elements not belonging to C ;

• two subsequences associated with two distinct clusters C and C Õ in a descriptor sequence
must be separated by at least one occurrence of a Type-1 descriptor element (intuitively,
in order to “leave” a cluster and to enter another one, a new state—not belonging to the
set of already met states—must occur in the track). Type-1 descriptor elements thus act as
“separators”.

While Rt allows us to order any pair of Type-1 descriptor elements, as well as any Type-1
descriptor element with respect to a Type-2 descriptor element, it does not give any means to
order Type-2 descriptor elements belonging to the same cluster. This, together with the fact
that Type-2 elements may have multiple occurrences in a descriptor sequence, implies that we
need to somehow limit the number of occurrences of Type-2 elements in order to give a bound
on the length of track representatives of B

k

-descriptors.
To this end, we introduce an equivalence relation that allows us to put together indistin-

guishable occurrences of the same descriptor element in a descriptor sequence, that is, to detect
those occurrences which are associated with prefixes of the track with the same B

k

-descriptor.
The idea is that a track representative for a B

k

-descriptor should not include indistinguishable
occurrences of the same descriptor element.

Definition 16: Let fl
ds

be a descriptor sequence and k Ø 1. We say that two occurrences fl
ds

(i)
and fl

ds

(j), with 0 Æ i < j < |fl
ds

|, of the same descriptor element d are k-indistinguishable if
(and only if)

• (for k = 1) DElm(fl
ds

(0, i ≠ 1)) = DElm(fl
ds

(0, j ≠ 1)).
• (for k Ø 2) for all i Æ ¸ Æ j ≠ 1, there exists 0 Æ ¸Õ Æ i ≠ 1 such that fl

ds

(¸) and fl
ds

(¸Õ) are
(k ≠ 1)-indistinguishable.

From definition 16, it immediately follows that two indistinguishable occurrences fl
ds

(i) and
fl

ds

(j) of the same descriptor element necessarily belong to the same subsequence of fl
ds

. (In
general, it is always the case that DElm(fl

ds

(0, i≠1)) ™ DElm(fl
ds

(0, j≠1)), for i < j.) Moreover,
1-indistinguishability guarantees that DElm(fl

ds

(0, i ≠ 1)) = DElm(fl
ds

(0, j ≠ 1)). From this, it
easily follows that the two first occurrences of a descriptor element are not 1-indistinguishable.

a b a a b a b a a b a b c a b a b c b c a b b a b

◊

◊

1 1 2 3 3

1 2 3

◊

◊

1
1

2

1 1 2 3 3

◊

1

210000

120000

111000

110100

102000

101100

100200

100110

100101

100020

100011

100002

030000

021000

012000

011100

010200

003000

002100

001200

000300

000210

000201

000120

000111

Fig. 4. The track fl = v0v1v2v3v3v2v3v3v2v3v2v3v3v2v3v2v1v3v2v3v2v1v2v1v3v2v2v3v2 of
the finite Kripke structure depicted in Figure 3 generates the descriptor sequence flds =
(v0, ÿ, v1)(v0, {v1}, v2)(v0, {v1, v2}, v3)abaababaababcababcbcabbab, where a, b, and c stand for (v0, {v1, v2, v3}, v3),
(v0, {v1, v2, v3}, v2), and (v0, {v1, v2, v3}, v1), respectively. Here we show the subsequence flds(3, |flds| ≠ 1)
associated with the cluster C = {a, b, c}. Pairs of k-indistinguishable consecutive occurrences of descriptor
elements are connected by a rounded edge labelled by k. Edges labelled by ◊ link occurrences which are not
1-indistinguishable. The values of all missing edges can be derived from the properties established by Proposition
7 and Proposition 8. At the bottom of the figure, for each position, we report the associated configuration:
c(3) = (2, 1, 0, 0, 0, 0), c(4) = (1, 2, 0, 0, 0, 0), and so on.

Proposition 6 and Proposition 7 state some basic properties of the k-indistinguishability
relation.

Proposition 6: Let k Ø 2 and fl
ds

(i) and fl
ds

(j), with 0 Æ i < j < |fl
ds

|, be two k-
indistinguishable occurrences of the same descriptor element in a descriptor sequence fl

ds

. Then,
fl

ds

(i) and fl
ds

(j) are (k ≠ 1)-indistinguishable.
Proposition 7: Let k Ø 1 and fl

ds

(i) and fl
ds

(m), with 0 Æ i < m < |fl
ds

|, be two k-
indistinguishable occurrences of the same descriptor element in a descriptor sequence fl

ds

. If
fl

ds

(j) = fl
ds

(m), for some i < j < m, then fl
ds

(j) and fl
ds

(m) are k-indistinguishable.
In Figure 4, we give some examples of k-indistinguishability relations, for k œ {1, 2, 3}, for a

track of the finite Kripke structure depicted in Figure 3.
The next theorem establishes a fundamental connection between the notions of k-

indistinguishability of descriptor elements and k-descriptor equivalence of tracks.
Theorem 2: Let fl

ds

be the descriptor sequence for a track fl. Two occurrences fl
ds

(i) and
fl

ds

(j), with 0 Æ i < j < |fl
ds

|, of the same descriptor element are k-indistinguishable if and only
if fl(0, i + 1) ≥

k

fl(0, j + 1).
Notice that k-indistinguishability between occurrences of descriptor elements is defined only for

pairs of prefixes of the same track, while the relation of k-descriptor equivalence can be applied
to pairs of any tracks of a Kripke structure.

The following proposition easily follows from Theorem 2.
Proposition 8: Let fl

ds

(i), fl
ds

(j), and fl
ds

(m), with 0 Æ i < j < m < |fl
ds

|, be three occurrences
of the same descriptor element. If both the pair fl

ds

(i) and fl
ds

(j) and the pair fl
ds

(j) and fl
ds

(m)
are k-indistinguishable, for some k Ø 1, then fl

ds

(i) and fl
ds

(m) are k-indistinguishable as well.

IV. Track representatives
In this section, we will exploit the k-indistinguishability relation between descriptor elements

in a descriptor sequence fl
ds

for a track fl to possibly replace fl by a k-descriptor equivalent,
shorter track flÕ of bounded length. This allows us to find, for each (witnessed) B

k

-descriptor
D

Bk , a track representative fl̃, witnessed in the considered finite Kripke structure, such that (i)
D

Bk is the B
k

-descriptor for fl̃ and (ii) the length of fl̃ is bounded. Thanks to property (ii), we can
check all the track representatives of a finite Kripke structure by simply visiting its unravelling
up to a bounded depth.

The notion of track representative can be explained as follows. Let fl
ds

be the descriptor
sequence for a track fl. If there exist two occurrences of the same descriptor element fl

ds

(i) and

fl
ds

(j), with i < j, which are k-indistinguishable (we let fl = fl(0, j+1)·fl and fl = fl(j+2, |fl|≠1)),
then we can replace the track fl by the k-descriptor equivalent, shorter track fl(0, i+1) ·fl. Indeed,
by Theorem 2, fl(0, i+1) and fl(0, j +1) have the same B

k

-descriptor and thus, by Proposition 2,
fl = fl(0, j +1) ·fl and fl(0, i+1) ·fl have the same B

k

-descriptor. Moreover, since fl
ds

(i) and fl
ds

(j)
are occurrences of the same descriptor element, fl(i+1) = fl(j +1) and thus the track fl(0, i+1) ·fl
is witnessed in the finite Kripke structure. By iteratively applying such a contraction method,
we can find a track flÕ, which is k-descriptor equivalent to fl, whose descriptor sequence is devoid
of k-indistinguishable occurrences of descriptor elements. A track representative is a track that
fulfils this property. In the rest of the section, we shall consider the problem of establishing a
bound to the length of track representatives.

We start by stating some technical properties. The next proposition provides a bound to
the distance within which we observe a repeated occurrence of some descriptor element in the
descriptor sequence for a track. We preliminary observe that, for any track fl, |DElm(fl

ds

)| Æ
|W |2 + 1, where W is the set of states of the finite Kripke structure. Indeed, in the descriptor
sequence, the sets of internal states of prefixes of fl increase monotonically with respect to the
“™” relation. As a consequence, at most |W | distinct sets may occur, excluding ÿ, which can
occur only in the first descriptor element. Moreover, these sets can be paired with all possible
final states, which are at most |W |.

Proposition 9: For each track fl of K , with descriptor element d, there exists a track flÕ of K ,
with the same descriptor element, such that |flÕ| Æ 2 + |W |2.

Proposition 9 will be used in the unravelling algorithm reported in Figure 6 as a termination
criterion (referred to as 0-termination criterion) for the unravelling a finite Kripke structure
when it is not necessary to observe multiple occurrences of the same descriptor element.

Definition 17 (0-termination criterion): To get a track representative for all descriptor
elements, witnessed in a finite Kripke structure with set of states W and with initial state
v, we can avoid to consider tracks longer than 2 + |W |2, while exploring the unravelling of the
Kripke structure from v.

Let us now consider the problem of establishing a bound for tracks devoid of pairs of k-
indistinguishable occurrences of descriptor elements. We first notice that in a descriptor sequence
fl

ds

for a track fl, there are at most |W | occurrences of Type-1 descriptor elements. On the
contrary, Type-2 descriptor elements can occur multiple times and thus, in order to bound the
length of fl

ds

, one has to bound the length of subsequences of fl
ds

associated with clusters of Type-
2 descriptor elements. Since these subsequences are separated by Type-1 descriptor elements, at
most |W | of them, related to distinct clusters, can occur in any descriptor sequence. Finally, for
any cluster C , it holds that |C | Æ |W |, because all (Type-2) descriptor elements of C share the
same set S of internal states and their final states v

fin

must belong to S.
In the following, we consider the (maximal) subsequence fl

ds

(u, v) of fl
ds

associated with a
specific cluster C , for some 0 Æ u Æ v Æ |fl

ds

| ≠ 1 and, when we mention an index i, we implicitly
assume that u Æ i Æ v, that is, i refers to a position in the subsequence.

Given the subsequence associated with a cluster C , we sequentially scan it, suitably recording
the multiplicity of occurrences of descriptor elements into an auxiliary structure. To detect
indistinguishable occurrences of descriptor elements up to indistinguishability s Ø 1, we use
s + 3 arrays Q≠2(), Q≠1(), Q0(), Q1(), Q2(), . . ., Q

s

(). Array elements are sets of descriptor
elements of C . Given an index i, the sets at position i, Q≠2(i), Q≠1(i), Q0(i), Q1(i), Q2(i), . . .,
Q

s

(i) store information about indistinguishabilty for multiple occurrences of descriptor elements
in the subsequence up to position i > u. To exemplify, if we assume that the scan function finds
an occurrence of the descriptor element d œ C at position i, that is, fl

ds

(i) = d, we have:
1) Q≠2(i) contains all descriptor elements of C which have never occurred in fl

ds

(u, i);

f(flds, u) =
!

C \ {d}, {d}, ÿ, · · · , ÿ
"

with flds(u) = d;

For all i > u: f(flds, i) =
!
Q≠2(i), Q≠1(i), Q0(i), . . . , Qs(i)

"
=

Y
_______________________]

_______________________[

!
Q≠2(i≠1)\{d}, {d}fi

ts

m=≠1 Qm(i≠1), ÿ, . . . , ÿ
"

if flds(i) is the first occurrence of d in flds(u, i); (a)
!
Q≠2(i ≠ 1), Q≠1(i ≠ 1) \ {d}, {d} fi

ts

m=0 Qm(i ≠ 1), ÿ, . . . , ÿ
"

if flds(i) = d, d œ Q≠1(i ≠ 1), and
flds(i) is at least the second occurrence of d in flds(u, i) and it is not 1-indistinguishable from the
immediately preceding occurrence of d; (b)
!
Q≠2(i ≠ 1), Q≠1(i ≠ 1), {d} fi Q0(i ≠ 1), Q1(i ≠ 1) \ {d}, . . . , Qs(i ≠ 1) \ {d}

"
if flds(i) = d,

d œ
ts

m=0 Qm(i ≠ 1), and flds(i) is at least the second occurrence of d in flds(u, i) and it is not

1-indistinguishable from the immediately preceding occurrence of d; (c)
!
Q≠2(i ≠ 1) \ {d}, . . . , Qt≠1(i ≠ 1) \ {d}, {d} fi

ts

m=t
Qm(i ≠ 1), ÿ, . . . , ÿ

"
if flds(i) = d, flds(i)

is t-indistinguishable (for some t Ø 1), but not (t + 1)-indistinguishable, to the immediately
preceding occurrence of d, and d œ

tt≠1
m=≠2 Qm(i ≠ 1); (d)

!
Q≠2(i≠1), · · · , Qt≠1(i≠1), {d}fiQt(i≠1), Qt+1(i≠1)\{d}, . . . , Qs(i≠1)\{d}

"
if flds(i) = d, flds(i)

is t-indistinguishable (for t Ø 1), but not (t + 1)-indistinguishable, to the immediately preceding
occurrence of d, and d œ

ts

m=t
Qm(i ≠ 1). (e)

Fig. 5. Definition of the scan function f .

2) d œ Q≠1(i) if d has never occurred in fl
ds

(u, i ≠ 1) and fl
ds

(i) = d, that is, fl
ds

(i) is the first
occurrence of d in fl

ds

(u, i);
3) d œ Q0(i) if d occurs at least twice in fl

ds

(u, i) and the occurrence fl
ds

(i) of d is not 1-
indistinguishable from the last occurrence of d in fl

ds

(u, i ≠ 1);
4) d œ Q

t

(i) (for some t Ø 1) if the occurrence fl
ds

(i) of d is t-indistinguishable, but not
(t + 1)-indistinguishable, from the last occurrence of d in fl

ds

(u, i ≠ 1).
In particular, at position u (the first of the subsequence), Q≠1(u) contains only the descriptor

element d = fl
ds

(u), Q≠2(u) is the set C \ {d} and Q0(u), Q1(u). . . are empty sets.
In general, arrays Q≠2(), Q≠1(), Q0(), Q1(), Q2(), . . ., Q

s

() satisfy the following constraints:
• for all i,

t
s

m=≠2 Q
m

(i) = C ;
• for all i and all m ”= mÕ, Q

m

(i) fl Q
m

Õ(i) = ÿ.
Intuitively, at every position i, Q≠2(i), Q≠1(i), . . ., Q

s

(i) describe a state of the scanning
process of the subsequence. The change of the state produced by the transition from position
i ≠ 1 to i while scanning the sequence is formally defined by the function f , reported in
Figure 5, which maps the descriptor sequence fl

ds

and a position i to the tuple of sets!
Q≠2(i), Q≠1(i), Q0(i), . . . , Q

s

(i)
"
.

Notice that whenever a descriptor element fl
ds

(i) = d is such that d œ Q
z

(i≠1) and d œ Q
z

Õ(i),
with z < zÕ (cases (a), (b) and (d) of the definition of f), all Q

z

ÕÕ(i) with zÕÕ > zÕ are empty
sets and all elements in Q

z

ÕÕ(i ≠ 1) for all zÕÕ Ø zÕ belong to Q
z

Õ(i). Consider, for instance, this
scenario: in a subsequence of fl

ds

associated with some cluster C , fl
ds

(h) = fl
ds

(i) = d œ C and
fl

ds

(hÕ) = fl
ds

(iÕ) = dÕ œ C for some h < hÕ < i < iÕ and d ”= dÕ, and there are not other
occurrences of d and dÕ in fl

ds

(h, iÕ). If fl
ds

(h) and fl
ds

(i) are exactly zÕ-indistinguishable, by
definition of the indistinguishability relation, fl

ds

(hÕ) and fl
ds

(iÕ) can be no more than (zÕ + 1)-
indistinguishable. Thus, if dÕ is in Q

z

ÕÕ(i ≠ 1) for some zÕÕ > zÕ, we can safely “downgrade” it
to Q

z

Õ(i), because we know that when we meet the next occurrence of dÕ (fl
ds

(iÕ)), fl
ds

(hÕ) and
fl

ds

(iÕ) will be no more than (zÕ + 1)-indistinguishable.

In the following, we will make use of an abstract characterisation of the state of the arrays at
a given position i, as determined by the scan function f , called configuration, that only considers
the cardinality of the sets of arrays. We will prove that when a descriptor subsequence is scanned,
configurations never repeat, that is, the sequence of configurations is strictly decreasing according
to the lexicographical order >

lex

. This property will allow us to establish the bound to the length
of track representatives.

Definition 18: Let fl
ds

be the descriptor sequence for a track fl and i be a position in the
subsequence of fl

ds

associated with a given cluster. The configuration at position i, written c(i),
is the tuple:

c(i) = (|Q≠2(i)|, |Q≠1(i)|, |Q0(i)|, |Q1(i)|, · · · , |Q
s

(i)|),

where f(fl
ds

, i) = (Q≠2(i), Q≠1(i), Q0(i), Q1(i), · · · , Q
s

(i)).
An example of a configuration sequence is given in Figure 4.

Theorem 3: Let fl
ds

be the descriptor sequence for a track fl and fl
ds

(u, v), for some u < v, be
the subsequence associated with a cluster C . For all u < i Æ v, if fl

ds

(i) = d, then it holds that
d œ Q

s

(i ≠ 1), d œ Q
s+1(i), and c(i ≠ 1) >

lex

c(i), for some s œ {≠2, ≠1, 0} fi N.
The proof of Theorem 3 is given in the Appendix.
We show now how to select all and only those tracks which do not feature any pair of

k-indistinguishable occurrences of descriptor elements. To this end, we make use of a scan
function f which exploits k + 3 arrays (the value k + 3 derives from the k of descriptor element
indistinguishability, plus the three arrays Q≠2(), Q≠1(), Q0()). Theorem 3 guarantees that, while
scanning a subsequence, configurations are never repeated. Such a property allows us to fix an
upper bound to the length of a track, exceeding which the descriptor sequence for the track
features at least a pair of k-indistinguishable occurrences of a descriptor element. The bound is
essentially given by the number of possible configurations for k + 3 arrays.

By an easy combinatorial argument, we can prove the following proposition.
Proposition 10: For all n, t œ N+, the number of distinct t-tuples of natural numbers whose

sum equals n is

Á(n, t) =
3

n + t ≠ 1
n

4
=

3
n + t ≠ 1

t ≠ 1

4
.

Proposition 10 provides two upper bounds for Á(n, t): Á(n, t) Æ (n + 1)t≠1 and Á(n, t) Æ tn.
Since a configuration c(i) of a cluster C is a (k + 3)-tuple, whose elements add up to |C |,

Proposition 10 allows us to conclude that there are at most Á(|C |, k + 3) =
!|C |+k+2

k+2
"

distinct
configurations of size (k + 3), whose integers add up to |C |. Moreover, since configurations never
repeat while scanning a subsequence associated with a cluster C , Á(|C |, k + 3) is an upper bound
to the length of such a subsequence.

Now, for any track fl, fl
ds

has at most |W | subsequences associated with distinct clusters
C1, C2, . . . , and thus if the following upper bound to the length of fl is exceeded, then there is at
least one pair of k-indistinguishable occurrences of a descriptor element in fl

ds

: |fl| Æ 1 + (|C1| +
1)k+2 + (|C2| + 1)k+2 + · · · + (|C

s

| + 1)k+2 + |W |, where s Æ |W | and the last addend is to count
occurrences of Type-1 descriptor elements. Since clusters are disjoint and their union is a subset
of DElm(fl

ds

), and |DElm(fl
ds

)| Æ 1 + |W |2, we have two possible upper bounds:

|fl| Æ 1 + (|C1| + |C2| + · · · + |C
s

| + |W |)k+2 + |W | Æ
1 + (|DElm(fl

ds

)| + |W |)k+2 + |W | Æ
1 + (1 + |W |2 + |W |)k+2 + |W | Æ 1 + (1 + |W |)2k+4 + |W |,

and

|fl| Æ 1 + (k + 3)|C1| + (k + 3)|C2 | + · · · + (k + 3)|Cs | + |W | Æ
1 + (k + 3)|C1|+|C2 |+···+|Cs | + |W | Æ

1 + (k + 3)|DElm(flds)| + |W | Æ 1 + (k + 3)|W |2+1 + |W |.

The upper bound for |fl| is then the least of the two given upper bounds:

·(|W |, k) = min
)

1 + (1 + |W |)2k+4 + |W |, 1 + (k + 3)|W |2+1 + |W |
*

.

Theorem 4: Let K be a finite Kripke structure and fl be a track in TrkK . If |fl| > ·(|W |, k),
there exists another track in TrkK , whose length is less than or equal to ·(|W |, k), which has
the same B

k

-descriptor as fl.
Proof: (Sketch) If |fl| > ·(|W |, k), then there exists at least one subsequence of fl

ds

, associated
with some cluster C , which contains at least one pair of k-indistinguishable occurrences of a
descriptor element d œ C , say fl

ds

(i) and fl
ds

(j), with j < i. By Theorem 2, the two tracks
associated with fl

ds

(0, j) and fl
ds

(0, i), say fl̃1 and fl̃2, have the same B
k

-descriptor. Now, let
us rewrite the track fl as the concatenation fl̃2 · fl for some fl. By Proposition 2, the tracks
fl = fl̃2 · fl and flÕ = fl̃1 · fl have the same B

k

-descriptor. Since lst(fl̃1) = lst(fl̃2) (fl
ds

(j) and fl
ds

(i)
are occurrences of the same descriptor element d), flÕ = fl̃1 · fl is a track of K shorter than fl. If
|flÕ| Æ ·(|W |, k), we have proved the thesis; otherwise, we can iterate the process by applying
the above contraction to flÕ.

Theorem 4 allows us to specify a termination criterion to bound the depth of the unravelling of
a finite Kripke structure, while searching for track representatives for witnessed B

k

-descriptors.
Definition 19 ((k Ø 1)-termination criterion): For any given k Ø 1, to get a track representative

for every B
k

-descriptor with a given initial state v and witnessed in a finite Kripke structure
with set of states W , we can avoid to take into consideration tracks longer than ·(|W |, k) while
exploring the unravelling of the structure from v.

In Figure 6, we outline an unravelling algorithm, which search the unravelling of the input
Kripke structure K to find the track representatives for all witnessed B

k

-descriptors. The upper
bound ·(|W |, k) on the maximum depth of the unravelling ensures the termination of the
algorithm, which never returns a track fl if there exist k-indistinguishable occurrences of a
descriptor element d in fl

ds

.
The following theorem proves soundness and completeness of the unravelling algorithm in

Figure 6.
Theorem 5: Let K be a finite Kripke structure, v be a state in W , and k œ N. For every track

fl of K , with fst(fl) = v and |fl| Ø 2, the unravelling algorithm returns a track flÕ of K , with
fst(flÕ) = v, such that fl and flÕ have the same B

k

-descriptor and |flÕ| Æ ·(|W |, k).
The proof of Theorem 5 is given in the Appendix.
It basically shows how a “contracted variant” of a track fl is (indirectly) computed by the

algorithm in Figure 6.
As an example, in place of the track fl of Figure 4, the algorithm returns the following

contracted track:

flÕ = v0v1v2v3v3v2v3v3v2v3v2v3v2v1v3v2v3v2v1v2v1v3v2.

It can be easily checked that flÕ does not contain any pair of 3-indistinguishable occurrences of
a descriptor element and that fl and flÕ have the same B3-descriptor.

In the forward modality, the direction of track exploration and that of indistinguishability
checking are the same, so we can stop extending a track as soon as the first pair of k-
indistinguishable occurrences of a descriptor element is found in the descriptor sequence,

1: Û “π” is an arbitrary order of the nodes of K
2: if direction = forward then

3: Unravel K starting from v according to π
4: For every new node of the unravelling met during the visit, return the track fl from v

to the current node only if:
5: if k = 0 then

6: Apply 0-termination criterion of Definition 17
7: else

8: if The last descriptor element d of (the descriptor sequence of) the current track fl
is k-indistinguishable from a previous occurrence of d then

9: do not return fl and backtrack to fl(0, |fl| ≠ 2) · v, where v is the minimum state
(w.r.t. π) greater than fl(|fl| ≠ 1) such that (fl(|fl| ≠ 2), v) is an edge of K .

10: else if direction = backward then

11: Unravel K starting from v according to π Û K is K with transposed edges
12: For every new node of the unravelling met during the visit, consider the track fl from

the current node to v, and recalculate descriptor elements indistinguishability from scratch
(left to right); return the track only if:

13: if k = 0 then

14: Apply 0-termination criterion of Definition 17
15: else

16: if There exist two k-indistinguishable occurrences of a descriptor element d in (the
descriptor sequence of) the current track fl then

17: do not return fl

18: Do not visit tracks of length greater than ·(|W |, k)

Fig. 6. Unrav(K , v, k, direction)

suggesting an easy termination criterion for stopping the unravelling of tracks. In the backward
modality, such a straightforward criterion cannot be adopted, because tracks are explored right
to left (the opposite direction with respect to edges of the Kripke structure), while the indistin-
guishability relation over descriptor elements is computed left to right. In general, changing
the prefix of a considered track requires recomputing from scratch the descriptor sequence
and the indistinguishability relation over descriptor elements. In particular, k-indistinguishable
occurrences of descriptor elements can be detected in the middle of a subsequence, and not
necessarily at the end.

Luckily, a heuristic is applicable when dealing with the backward modality: if the descriptor
sequence fl

ds

for fl contains a pair of k-indistinguishable occurrences fl
ds

(j) and fl
ds

(i) of the same
descriptor element, with j < i, it is possible to skip the exploration of tracks of the form fl ·fl, for
any fl œ TrkK . Since fl(0, j +1) and fl(0, i+1) have the same B

k

-descriptor, by Proposition 3, for
any fl œ TrkK such that (lst(fl), fst(fl)) is an edge of K , fl · fl(0, i + 1) and fl · fl(0, j + 1) have the
same B

k

-descriptor and thus fl · fl still features the same pair of k-indistinguishable occurrences.
Then, the exploration can continue from v · fl(1, |fl| ≠ 1), where v is the minimum state (with
respect to the arbitrarily chosen order of nodes π) greater than fl(0) such that (v, fl(1)) is an
edge of K .

V. The model checking algorithm

Building on the unravelling algorithm in Figure 6, we can easily define the model check-
ing procedure ModCheck(K , Â), whose pseudocode is reported in Figure 7. In particular

1: k Ω NestB(Â)
2: u Ω New (Unrav(K , init_state(K), k, forward))
3: while u.hasMoreTracks() do

4: fl̃ Ω u.getNextTrack()

5: if Check(K , k, Â, fl̃) = 0 then

6: return 0: “K , fl̃ ”|= Â” Û Counterexample
7: return 1: “K |= Â”

Fig. 7. ModCheck(K , Â)

u.hasMoreTracks(), in the guard of the while-loop, is true if and only if not all tracks have
already been returned by u, which is an instance of the unravelling algorithm; u.getNextTrack()

returns the next track from u.
ModCheck(K , Â) exploits the procedure Check(K , k, Â, fl̃), shown in Figure 8, which checks a

formula Â of B-nesting depth k against a track fl̃ of the Kripke structure K .
Before proving the correctness of the model checking procedure, we first assess a correctness

result for the auxiliary procedure Check (the proof is given in the Appendix).
Lemma 3: Let Â be an HS[A, A, B, B, E] formula, with NestB(Â) = k, K be a Kripke structure,

and fl̃ be a track in TrkK . The procedure Check(K , k, Â, fl̃) returns 1 if and only if K , fl̃ |= Â.
Notice that an optimization step could be introduced at line 32 of Figure 8, before calling

Check recursively on a prefix of fl̃: if a prefix fl̂1 has the same B
k≠1-descriptor of the current

prefix fl̂2 of fl̃, and it is shorter than fl̂2 (it is possible to check the requirement by exploiting
descriptor element indistinguishability), and Check has already tested fl̂1, it is possible to skip
the call on fl̂2. Moreover, instead of checking fl̂2 ·fl, a prefix of fl̃ for some fl, it is possible to check
fl̂1 · fl (since, by the right extension proposition 2, they have the same B

k≠1-descriptor).
The following theorem assesses the correctness of the model checking procedure.
Theorem 6: Let Â be an HS[A, A, B, B, E] formula and K be a finite Kripke structure.

ModCheck(K , Â) = 1 if and only if K |= Â.
Proof: If K |= Â, then for all fl œ TrkK such that fst(fl) = w0 is the initial state of K , we have

K , fl |= Â. By Lemma 3, it follows that Check(K , NestB(Â), Â, fl) returns 1. Now, the unravelling
procedure returns a subset of the initial tracks. This implies that ModCheck(K , Â) returns 1.
If ModCheck(K , Â) returns 1, then for any track fl with fst(fl) = w0 returned by the unravelling
algorithm, Check(K , NestB(Â), Â, fl) returns 1 and, by Lemma 3, K , fl |= Â. Assume now that a
track fl̃ with fst(fl̃) = w0, is not returned by the unravelling algorithm. By Theorem 5, there is
a track fl, with fst(fl) = w0, which is returned in place of fl̃ and fl has the same B

k

-descriptor of
fl̃ (with k = NestB(Â)). Since K , fl̃ |= Â ≈∆ K , fl |= Â (by Theorem 1) and K , fl |= Â, we get
that K , fl̃ |= Â. So all tracks starting with state w0 model Â, implying that K |= Â.

Finally, we observe that the model checking algorithm ModCheck is in EXPSPACE. Indeed,
ModCheck uses an instance of the unravelling algorithm and some additional space for a track
fl̃. Analogously, every recursive call to Check needs an instance of the unravelling algorithm and
space for a track. Since there are at most |Â| (where Â is the input formula) simultaneously
active calls to Check, the total space needed by the considered algorithms is (|Â| + 1) O(|W | +
NestB(Â))·(|W |, NestB(Â)) bits overall, where ·(|W |, NestB(Â)) is the maximum length of track
representatives, and O(|W | + NestB(Â)) bits are needed to represent a state of K , a descriptor
element, and a counter for k-indistinguishability.

Notice that formulas Â of the fragment HS[A, A, B, E] can be checked in polynomial space,
as for these formulas NestB(Â) = 0.

We conclude this section by proving that the model checking problem for HS[A, A, B, B, E]
formulas, interpreted over finite Kripke structures, is NEXP-hard when a suitable encoding of

1: if Â = € then

2: return 1
3: else if Â = ‹ then

4: return 0
5: else if Â = p œ AP then

6: if p œ
u

sœstates(fl̃) µ(s) then

7: return 1
8: else

9: return 0
10: else if Â = ¬Ï then

11: return 1 ≠ Check(K , k, Ï, fl̃)
12: else if Â = Ï1 · Ï2 then

13: if Check(K , k, Ï1, fl̃) = 0 then

14: return 0
15: else

16: return Check(K , k, Ï2, fl̃)
17: else if Â = ÈAÍ Ï then

18: u Ω New (Unrav(K , lst(fl̃), k, forward))
19: while u.hasMoreTracks() do

20: fl Ω u.getNextTrack()

21: if Check(K , k, Ï, fl) = 1 then

22: return 1
23: return 0
24: else if Â = ÈAÍ Ï then

25: u Ω New (Unrav(K , fst(fl̃), k, backward))
26: while u.hasMoreTracks() do

27: fl Ω u.getNextTrack()

28: if Check(K , k, Ï, fl) = 1 then

29: return 1
30: return 0
31: else if Â = ÈBÍ Ï then

32: for each fl prefix of fl̃ do

33: if Check(K , k ≠ 1, Ï, fl) = 1 then

34: return 1
35: return 0
36: else if Â = ÈBÍ Ï then

37: for each v œ W such that (lst(fl̃), v) is an edge of K do

38: if Check(K , k, Ï, fl̃ · v) = 1 then

39: return 1
40: u Ω New (Unrav(K , v, k, forward))
41: while u.hasMoreTracks() do

42: fl Ω u.getNextTrack()

43: if Check(K , k, Ï, fl̃ · fl) = 1 then

44: return 1
45: return 0
46: else if Â = ÈEÍ Ï then

47: · · · Û Symmetric to Â = ÈBÍ Ï.

Fig. 8. Check(K , k, Â, fl̃)

formulas is exploited. Such an encoding is succinct in the sense that the following binary-encoded
shorthands are allowed: ÈBÍk Â stands for k repetitions of ÈBÍ before Â, where k is represented
in binary. The same can be done for all other HS modalities. Moreover,

w
i=l,··· ,r

Â(i) denotes a
conjunction of formulas which contain some occurrences of the index i as exponents (l and r are
binary encoded naturals), for example

w
i=1,··· ,5 ÈBÍi €.

We finally denote by expand(Â) the expanded form of Â: all exponents k have to be eliminated
from Â by explicitly repeating k times each HS modality with such an exponent, and big
conjunctions must be replaced by conjunctions of formulas without indexes.

In the following theorem we will prove that the model checking problem for succinct
HS[A, A, B, B, E] formulas is NEXP-hard, otherwise—if formulas are not succinctly encoded—it
is NP-hard. The result is obtained by reducing the acceptance problem for a language L decided
by a non-deterministic one-tape Turing machine M (w.l.o.g.) that halts in O(2n

k) computation
steps on any input of size n, where k œ N+ is a constant. To reduce the problem we suitably
define a Kripke structure K = (AP , W, ”, µ, w0) and an HS[A, A, B, B, E] formula Â such that
K |= Â if and only if M accepts its input string c0c1 · · · c

n≠1.
Theorem 7: The model checking problem for HS[A, A, B, B, E] formulas against Kripke

structures is NEXP-hard, if formulas are succinctly encoded; otherwise the problem is NP-hard.
If for a succinct HS[A, A, B, B, E] formula Â, | expand(Â)| Æ 2|Â|c for some constant c œ N+,

then the model checking algorithm still runs in exponential space with respect to the succinct
input formula Â—by preliminarily expanding Â to expand(Â)—as ·(|W |, NestB(expand(Â)) is
exponential in |W | and |Â|. Indeed, it’s not di�cult to show that all succinct formulas Â are such
that | expand(Â)| Æ 2|Â|c . Thus we have shown that the model checking problem for succinct
HS[A, A, B, B, E] formulas is between NEXP and EXPSPACE.

VI. Conclusion and future work
In this paper, we devised an EXPSPACE model checking algorithm for the HS fragments

HS[A, A, B, B, E] and HS[A, A, E, E, B]. In addition, we proved that the problem is NEXP-
hard, provided that a succinct encoding of formulas is used (otherwise, we can only prove that it
is NP-hard). The proposed algorithm rests on a contraction method that allows us to restrict the
verification of the formula to a finite subset of tracks of bounded size, called track representatives.

As for the other HS fragments, we showed that HS[A, A, B, E] is in PSPACE, and we
conjecture that it and the “orthogonal” fragment HS[A, A, B, E] are PSPACE-complete. Another
interesting fragment is HS[A, A] (the logic of temporal neighbourhood): it can be easily shown
that it is NP-hard, but we can only think of PSPACE model checking algorithms.

Last but not least, it is worth exploring the model checking problem for HS and its fragments
under other semantic interpretations (relaxing the homogeneity assumption).

References
[1] E. Clarke, O. Grumberg, and D. Peled, Model Checking. MIT Press, 2002.
[2] J. Y. Halpern and Y. Shoham, “A propositional modal logic of time intervals,” Journal of the ACM, vol. 38,

no. 4, pp. 935–962, 1991.
[3] Y. Venema, “Expressiveness and completeness of an interval tense logic,” Notre Dame Journal of Formal

Logic, vol. 31, no. 4, pp. 529–547, 1990.
[4] ——, “A modal logic for chopping intervals,” Journal of Logic and Computation, vol. 1, no. 4, pp. 453–476,

1991.
[5] Z. Chaochen and M. R. Hansen, Duration Calculus - A Formal Approach to Real-Time Systems, ser.

Monographs in Theoretical Computer Science. An EATCS Series. Springer, 2004.
[6] B. Moszkowski, “Reasoning about digital circuits,” Ph.D. dissertation, Dept. of Computer Science, Stanford

University, Stanford, CA, 1983.
[7] I. Pratt-Hartmann, “Temporal prepositions and their logic,” Artificial Intelligence, vol. 166, no. 1-2, pp. 1–36,

2005.
[8] H. Bowman and S. J. Thompson, “A decision procedure and complete axiomatization of finite interval

temporal logic with projection,” Journal of Logic and Computation, vol. 13, no. 2, pp. 195–239, 2003.

[9] J. F. Allen, “Maintaining knowledge about temporal intervals,” Communications of the ACM, vol. 26, no. 11,
pp. 832–843, 1983.

[10] D. Bresolin, D. Della Monica, V. Goranko, A. Montanari, and G. Sciavicco, “The dark side of interval temporal
logic: marking the undecidability border,” Annals of Mathematics and Artificial Intelligence, vol. 71, no. 1-3,
pp. 41–83, 2014.

[11] K. Lodaya, “Sharpening the undecidability of interval temporal logic,” in Proc. of ASIAN, ser. LNCS 1961,
2000, pp. 290–298.

[12] J. Marcinkowski and J. Michaliszyn, “The undecidability of the logic of subintervals,” Fundamenta Infor-

maticae, vol. 131, no. 2, pp. 217–240, 2014.
[13] D. Bresolin, V. Goranko, A. Montanari, and P. Sala, “Tableau-based decision procedures for the logics of

subinterval structures over dense orderings,” Journal of Logic and Computation, vol. 20, no. 1, pp. 133–166,
2010.

[14] D. Bresolin, V. Goranko, A. Montanari, and G. Sciavicco, “Propositional interval neighborhood logics:
Expressiveness, decidability, and undecidable extensions,” Annals of Pure and Applied Logic, vol. 161, no. 3,
pp. 289–304, 2009.

[15] D. Bresolin, A. Montanari, P. Sala, and G. Sciavicco, “What’s decidable about Halpern and Shoham’s interval
logic? The maximal fragment ABBL,” in LICS’11. IEEE Comp. Society Press, 2011, pp. 387–396.

[16] A. Montanari, G. Puppis, and P. Sala, “Maximal decidable fragments of Halpern and Shoham’s modal logic
of intervals,” in ICALP’10 (2), ser. LNCS 6199, 2010, pp. 345–356.

[17] D. Della Monica, V. Goranko, A. Montanari, and G. Sciavicco, “Interval temporal logics: a journey,” Bull.

of the EATCS, vol. 105, pp. 73–99, 2011.
[18] A. Lomuscio and J. Michaliszyn, “An epistemic Halpern-Shoham logic,” in Proc. of IJCAI, 2013.
[19] A. R. Lomuscio and J. Michaliszyn, “Decidability of model checking multi-agent systems against a class of

EHS specifications,” in Proc. of ECAI, 2014, pp. 543–548.
[20] A. Montanari, A. Murano, G. Perelli, and A. Peron., “Checking interval properties of computations,” in Proc.

of TIME, 2014, pp. 59–68.
[21] A. Molinari, A. Montanari, A. Murano, G. Perelli, and A. Peron, “Checking Interval Properties of Compu-

tations,” Dept. of Mathematics and Computer Science, University of Udine, Tech. Rep. 2015/01, 2015.
[22] P. Roeper, “Intervals and tenses,” Journal of Philosophical Logic, vol. 9, pp. 451–469, 1980.
[23] C. H. Papadimitriou, Computational complexity. Addison-Wesley, 1994.

Appendix

A. Proof of Proposition 1
Proof: Let us assume that K , fl |= Â, with 0 Æ NestB(Â) Æ k. Consider the formula ÈBÍk €,

whose B-nesting depth is equal to k. It trivially holds that either K , fl |= ÈBÍk € or K , fl |=
¬ ÈBÍk €. In the first case, we have that K , fl |= ÈBÍk € · Â. Since NestB

1
ÈBÍk € · Â

2
= k, from

the hypothesis, it immediately follows that K , flÕ |= ÈBÍk € · Â, and thus K , flÕ |= Â. The other
case can be dealt with in a symmetric way.

B. Proof of Lemma 2
In the proof, we will exploit the fact that if two tracks in TrkK have the same B

k+1-descriptor,
then they also have the same B

k

-descriptor. The latter can indeed be obtained from the former
by removing the nodes at depth k + 1 (leaves) and then deleting isomorphic subtrees possibly
originated by the removal.

Proof: By induction on k.
k = 0: let’s assume fl1 and fl2 are associated with the descriptor element (v

in

, S, v
fin

) and flÕ
1

and flÕ
2 with (vÕ

in

, SÕ, vÕ
fin

). Thus fl1 ·flÕ
1 and fl2 ·flÕ

2 are represented by (v
in

, Sfi{v
fin

, vÕ
in

}fiSÕ, vÕ
fin

).
k > 0: let D

Bk be fl1 · flÕ
1’s descriptor and DÕ

Bk
be fl2 · flÕ

2’s descriptor: their roots are the same
as for k = 0; let’s now consider a prefix fl of fl1 · flÕ

1:
• if fl is a proper prefix of fl1, since fl1 and fl2 have the same B

k

-descriptor, there exists a
prefix fl of fl2 associated with the same subtree of fl of depth k ≠ 1 in fl1’s (fl2’s) descriptor;

• fl1 and fl2 have the same B
k≠1-descriptor because they have the same B

k

-descriptor;
• if fl is a proper prefix of fl1 · flÕ

1 such that fl = fl1 · fl̃1 for some prefix fl̃1 of flÕ
1, then two cases

have to be taken into account:
– if |fl̃1| = 1, then fl̃1 = vÕ

in

; but also fst(flÕ
2) = vÕ

in

. Let’s now consider the B
k≠1-descriptors

for fl1 · vÕ
in

and fl2 · vÕ
in

: the labels of the roots are the same, (v
in

, S fi {v
fin

}, vÕ
in

), then
the subtrees of depth k ≠ 2 are exactly the same as in fl1 and fl2’s B

k≠1-descriptor’s,
(possibly) with the addition of fl1’s B

k≠2-descriptor (which is equal to fl2’s). Thus fl1 ·vÕ
in

and fl2 · vÕ
in

have the same B
k≠1-descriptor;

– otherwise, since fl̃1 is a prefix of flÕ
1 of length at least 2, and flÕ

1 and flÕ
2 have the same

B
k

-descriptor, there exists a prefix fl̃2 of flÕ
2 associated with the same subtree of depth

k ≠ 1 as fl̃1 (in flÕ
1’s B

k

-descriptor). Hence, by inductive hypothesis, fl1 · fl̃1 and fl2 · fl̃2
have the same B

k≠1-descriptor.
Therefore we have shown that for any proper prefix of fl1 · flÕ

1 there exists a proper prefix of
fl2 · flÕ

2 with the same B
k≠1-descriptor. The inverse may be shown by symmetry. Thus D

Bk is
equal to DÕ

Bk
.

C. Proof of Proposition 6
Proof: The proof is by induction on k Ø 2.

Base case. Let fl
ds

(i) and fl
ds

(j) be two 2-indistinguishable occurrences of a descriptor element
d. By definition, for any fl

ds

(iÕ), with i Æ iÕ < j, an occurrence of the descriptor element dÕ =
fl

ds

(iÕ) must occur before position i, and thus DElm(fl
ds

(0, i ≠ 1)) = DElm(fl
ds

(0, j ≠ 1)). It
immediately follows that fl

ds

(i) and fl
ds

(j) are 1-indistinguishable.
Inductive step (k Ø 3). By definition, for all i Æ ¸ Æ j ≠ 1, there exists 0 Æ ¸Õ Æ i ≠ 1 such that

fl
ds

(¸) and fl
ds

(¸Õ) are (k ≠ 1)-indistinguishable. By the inductive hypothesis, fl
ds

(¸) and fl
ds

(¸Õ)
are (k ≠ 2)-indistinguishable, which implies that fl

ds

(i) and fl
ds

(j) are (k ≠ 1)-indistinguishable.

D. Proof of Proposition 7
Proof: The proof is by induction on k Ø 1.

Base case. Since DElm(fl
ds

(0, i ≠ 1)) = DElm(fl
ds

(0, m ≠ 1)) and DElm(fl
ds

(0, i ≠ 1)) ™
DElm(fl

ds

(0, j≠1)) ™ DElm(fl
ds

(0, m≠1)), then DElm(fl
ds

(0, i≠1)) = DElm(fl
ds

(0, m≠1)) =
DElm(fl

ds

(0, j ≠ 1)).
Inductive step (k Ø 2). By hypothesis, all occurrences fl

ds

(iÕ), with i Æ iÕ < m, are (k ≠ 1)-
indistinguishable from some occurrence of the same descriptor element before i. In particular,
this is true for all occurrences fl

ds

(jÕ), with j Æ jÕ < m. The thesis trivially follows.
E. Proof of Theorem 2

Proof: Let us assume that fl
ds

(i) and fl
ds

(j), with i < j, are k-indistinguishable. We prove
by induction on k Ø 1 that fl(0, i + 1) and fl(0, j + 1) have the same B

k

-descriptor.
Base case (k = 1). Since fl

ds

(i) and fl
ds

(j) are occurrences of the same descriptor element,
the B1-descriptors for fl(0, i + 1) and fl(0, j + 1) have roots labelled by the same descriptor
element. Moreover, the children of these B1-descriptors are in one to one correspondence since,
by 1-indistinguishability, DElm(fl

ds

(0, i ≠ 1)) = DElm(fl
ds

(0, j ≠ 1)).
Inductive step (k Ø 2). Since all the prefixes of fl(0, i + 1) are also prefixes of fl(0, j + 1), we

just need to consider the prefixes fl(0, t) with i + 1 Æ t Æ j. By definition, any occurrence fl
ds

(iÕ)
with i Æ iÕ < j, is (k ≠ 1)-indistinguishable from another occurrence fl

ds

(iÕÕ), with iÕÕ < i, of the
same descriptor element. By the inductive hypothesis, fl(0, iÕ + 1) and fl(0, iÕÕ + 1) have the same
B

k≠1-descriptor. It follows that, for any proper prefix of fl(0, j + 1) (of length at least 2), there
exists a proper prefix of fl(0, i + 1) with the same B

k≠1-descriptor, which implies that the tracks
fl(0, i + 1) and fl(0, j + 1) have the same B

k

-descriptor.
Conversely, we prove, by induction on k > 1, that if fl

ds

(i) and fl
ds

(j), with i < j, are not
k-indistinguishable, then the B

k

-descriptors of fl(0, i+1) and fl(0, j +1) are di�erent. We assume
fl

ds

(i) and fl
ds

(j) to be occurrences of the same descriptor element (if this was not the case, the
thesis would trivially follow, since the roots of the B

k

-descriptors for fl(0, i + 1) and fl(0, j + 1)
would be labelled with di�erent descriptor elements).

Base case (k = 1). If fl
ds

(i) and fl
ds

(j), with i < j, are not 1-indistinguishable, then
DElm(fl

ds

(0, i ≠ 1)) µ DElm(fl
ds

(0, j ≠ 1)). Hence, there exists d œ DElm(fl
ds

(0, j ≠ 1)) such
that d /œ DElm(fl

ds

(0, i ≠ 1)), and the B1-descriptor for fl(0, j + 1) has a leaf labelled by d which
is not present in the B1-descriptor for fl(0, i + 1).

Inductive step (k Ø 2). If fl
ds

(i) and fl
ds

(j), with i < j, are not k-indistinguishable, then there
exists (at least) one occurrence fl

ds

(iÕ), with i Æ iÕ < j, of a descriptor element d which is not
(k ≠1)-indistinguishable from any occurrence of d before position i. By the inductive hypothesis,
fl(0, iÕ +1) has a B

k≠1-descriptor which is not isomorphic to any B
k≠1-descriptor associated with

proper prefixes of fl(0, i + 1). Thus, in the B
k

-descriptor for fl(0, j + 1) there exists a subtree of
depth k ≠ 1 such that there is not an isomorphic subtree of depth k ≠ 1 in the B

k

-descriptor for
fl(0, i + 1).
F. Proof of Proposition 9

Proof: By induction on the length ¸(Ø 2) of fl.
Base case (¸ = 2). The track fl satisfies the condition l Æ 2 + |W |2.
Inductive step (¸ > 2). We distinguish two cases. If fl

ds

has not duplicated occurrences of the
same descriptor element, |fl

ds

| Æ 1+ |W |2, since |DElm(fl
ds

)| Æ 1+ |W |2, and thus fl satisfies the
condition l Æ 2 + |W |2. If fl

ds

(i) = fl
ds

(j), for some 0 Æ i < j < |fl
ds

|, fl(0, i + 1) and fl(0, j + 1)
are associated with the same descriptor element. Now, flÕ = fl(0, i + 1) · fl(j + 2, |fl| ≠ 1) is a track
of K since fl(i + 1) = fl(j + 1), and, by Proposition 2, fl = fl(0, j + 1) · fl(j + 2, |fl| ≠ 1) and flÕ have
the same descriptor element. By the inductive hypothesis, there is a track flÕÕ of K associated
with the same descriptor element of flÕ (and fl) with |flÕÕ| Æ 2 + |W |2.

G. Proof of Theorem 3
Proof: The proof is by induction on i Ø u + 1.

(Case i = u + 1) We consider two cases:
1) if fl

ds

(u) = fl
ds

(u+1) = d œ C , then we have Q≠2(u) = C \{d}, Q≠1(u) = {d}, ÿ = Q0(u) =
Q1(u) = · · · = Q

s

(u). Moreover, it holds Q≠2(u + 1) = C \ {d}, Q≠1(u) = ÿ, Q0(u) = {d}
and ÿ = Q1(u) = Q2(u) = · · · = Q

s

(u). c(u) >
lex

c(u + 1) and the thesis follows.
2) if d, dÕ œ C , d ”= dÕ and fl

ds

(u) = d, fl
ds

(u + 1) = dÕ, then we have Q≠2(u) = C \ {d},
Q≠1(u) = {d}, ÿ = Q0(u) = Q1(u) = · · · = Q

s

(u). Moreover, it holds Q≠2(u + 1) =
C \ {d, dÕ}, Q≠1(u) = {d, dÕ}, ÿ = Q0(u) = Q1(u) = · · · = Q

s

(u) and c(u) >
lex

c(u + 1),
implying the thesis.

(Case i > u + 1) In the following we say that fl
ds

(¸) and fl
ds

(m) (¸ < m) are consecutive
occurrences of a descriptor element d if there are no other occurrences of d in fl

ds

(¸ + 1, m ≠ 1).
We consider the following cases:

1) If fl
ds

(i) is the first occurrence of d œ C , then d œ Q≠2(i ≠ 1), d œ Q≠1(i) and c(i ≠ 1) >
lex

c(i).
2) If fl

ds

(i) is the second occurrence of d œ C , according to the definition, fl
ds

(i) can not be
1-indistinguishable from the previous occurrence of d. So d œ Q≠1(i ≠ 1) (fl

ds

(u, i ≠ 1)
contains the first occurrence of d) and d œ Q0(i), proving that c(i ≠ 1) >

lex

c(i).
3) If fl

ds

(i) is at least the third occurrence of d œ C , but fl
ds

(i) is not 1-indistinguishable from
the immediately preceding occurrence of d fl

ds

(iÕ), (with iÕ < i), then DElm(fl
ds

(u, iÕ≠1)) µ
DElm(fl

ds

(u, i≠1)). Hence, there exists a first occurrence of some dÕ œ C in fl
ds

(iÕ +1, i≠1),
say fl

ds

(j) = dÕ, for iÕ +1 Æ j Æ i≠1. Thus d œ Q≠1(j), · · · , d œ Q≠1(i≠1) and d œ Q0(i),
proving that c(i ≠ 1) >

lex

c(i).
4) In the remaining cases we assume that fl

ds

(i) is at least the third occurrence of d œ C . If
fl

ds

(i ≠ 1) and fl
ds

(i) are both occurrences of d œ C and fl
ds

(i ≠ 1) is t-indistinguishable, for
some t > 0, and not (t + 1)-indistinguishable, from the immediately preceding occurrence
of d, then fl

ds

(i ≠ 1) and fl
ds

(i) are exactly (t + 1)-indistinguishable. So d œ Q
t

(i ≠ 1) and
d œ Q

t+1(i), implying that c(i ≠ 1) >
lex

c(i) (as a particular case, if fl
ds

(i ≠ 1) and the
immediately preceding occurrence are not 1-indistinguishable, then fl

ds

(i ≠ 1) and fl
ds

(i)
are at most 1-indistinguishable).

5) If fl
ds

(i) is exactly 1-indistinguishable from the immediately preceding occurrence of d,
fl

ds

(j) (with j < i ≠ 1), then DElm(fl
ds

(u, j ≠ 1)) = DElm(fl
ds

(u, i ≠ 1)), and there are
no first occurrences of any dÕ œ C in fl

ds

(j, i ≠ 1). If fl
ds

(j) is not 1-indistinguishable from
its previous occurrence of d, it immediately follows that d œ Q0(j), · · · , d œ Q0(i ≠ 1) and
d œ Q1(i), implying that c(i ≠ 1) >

lex

c(i).
Otherwise, there exists j < iÕ < i such that fl

ds

(iÕ) = dÕÕ œ C is not 1-indistinguishable
from any occurrence of dÕÕ before j (as a matter of fact, if this was not the case, fl

ds

(i)
and fl

ds

(j) would be 2-indistinguishable); in particular, fl
ds

(iÕ) is not 1-indistinguishable
from the last occurrence of dÕÕ before j, say fl

ds

(jÕ), for some jÕ < j (such a jÕ exists since
there are no first occurrences in fl

ds

(j + 1, i ≠ 1)). Now, if by contradiction every pair of
consecutive occurrences of dÕÕ in fl

ds

(jÕ, iÕ) were 1-indistinguishable, then by property 8
fl

ds

(jÕ) and fl
ds

(iÕ) would be 1-indistinguishable. Thus, a pair of consecutive occurrences of
dÕÕ exists, where the second element in the pair is fl

ds

(¸) = dÕÕ with j < ¸ < i, such that
they are not 1-indistinguishable. By inductive hypothesis, dÕÕ œ Q≠1(¸≠1) and dÕÕ œ Q0(¸).
Therefore, d œ Q0(¸), · · · , d œ Q0(i ≠ 1) (recall that there are no first occurrences between
j and i) and d œ Q1(i), proving that c(i ≠ 1) >

lex

c(i).
6) If fl

ds

(j) = d œ C is at most t-indistinguishable (for some t Ø 1) from a preceding occurrence
of d and fl

ds

(j) and fl
ds

(i) = d (with j < i ≠ 1) are consecutive occurrences of d and they

are (t + 1)-indistinguishable (by definition of indistinguishability fl
ds

(j) and fl
ds

(i) cannot
be more than (t + 1)-indistinguishable), any occurrence of dÕ œ C in fl

ds

(j + 1, i ≠ 1) is (at
least) t-indistinguishable from another occurrence of dÕ before j. By property 7, all pairs
of consecutive occurrences of dÕ in fl

ds

(j + 1, i ≠ 1) are (at least) t-indistinguishable, hence
d œ Q

t

(j), · · · , d œ Q
t

(i ≠ 1) and finally d œ Q
t+1(i), proving that c(i ≠ 1) >

lex

c(i).
7) If fl

ds

(j) = d œ C is at most t-indistinguishable (for some t Ø 1) from a preceding occurrence
of d, and fl

ds

(j) and fl
ds

(i) = d (with j < i≠1) are consecutive occurrences of d which are at
most t-indistinguishable, for 1 Æ t Æ t, we preliminary observe that DElm(fl

ds

(u, j ≠1)) =
DElm(fl

ds

(u, i ≠ 1)). Then, if a dÕÕ œ C , d ”= dÕÕ occurs in fl
ds

(j + 1, i ≠ 1) which is not
1-indistinguishable from any occurrence of dÕÕ before j, t = 1 and we are again in case 5.
Otherwise all the occurrences of descriptor elements in fl

ds

(j + 1, i ≠ 1) are (at least)
1-indistinguishable from other occurrences before j. Moreover, there exists j < iÕ < i
such that fl

ds

(iÕ) = dÕ œ C , d ”= dÕ and it is at most (t ≠ 1)-indistinguishable from another
occurrence of dÕ before j. Analogously to the case 5, fl

ds

(iÕ) must be (t≠1)-indistinguishable
from the last occurrence of dÕ before j, say fl

ds

(jÕ) with jÕ < j (it’s a consequence of
property 7). But two consecutive occurrences of dÕ in fl

ds

(jÕ, iÕ) must then be at most (t≠1)-
indistinguishable (if all pairs of occurrences of dÕ in fl

ds

(jÕ, iÕ) were t-indistinguishable,
fl

ds

(iÕ) and fl
ds

(jÕ) would be t-indistinguishable as well) where the second occurrence is
fl

ds

(¸) = dÕ for some j < ¸ Æ iÕ. By applying the inductive hypothesis, we have dÕ œ Q
t≠2(¸≠

1) and dÕ œ Q
t≠1(¸). As a consequence, we have d œ Q

t≠1(¸), · · · , d œ Q
t≠1(i ≠ 1) (all

descriptor elements in fl
ds

(j, i) are at least (t ≠ 1)-indistinguishable from other occurrences
before j) and finally d œ Q

t

(i), implying that c(i ≠ 1) >
lex

c(i).

It is worth pointing out that, from the proof of the theorem, it follows that the definition of
f is in fact redundant: cases (c) and (e) never happen.

H. Proof of Theorem 5
Proof: The proofs for the forward and backward directions are quite similar. We give the

proof for one direction (the forward one), and we omit the proof for the other direction.
If k = 0 the thesis follows immediately by definition 17. So let’s assume k Ø 1. The proof is

by induction on ¸ = |fl|.
(Case ¸ = 2) fl

ds

= (fst(fl), ÿ, lst(fl)), an the only descriptor element of the sequence is Type-1.
Thus fl itself is returned by the algorithm.

(Case ¸ > 2) If in fl
ds

there are no pairs of k-indistinguishable occurrences of some descriptor
element, the termination criterion of algorithm in figure 6 can never be applied. Thus fl itself is
returned (as soon as it is visited) and its length is at most ·(|W |, k).

Otherwise, the descriptor sequence of any track fl can be split into 3 parts: fl
ds

= fl
ds1 ·

fl
ds2 · fl

ds3 where fl
ds1 ends with a Type-1 descriptor element and it does not contain pairs of k-

indistinguishable occurrences of a descriptor element, fl
ds2 is a subsequence of fl

ds

associated with
a cluster C of (Type-2) descriptor elements with at least a pair of k-indistinguishable occurrences
of descriptor elements and fl

ds3 (if it is not the empty sequence) begins with a Type-1 descriptor
element. Namely, fl

ds2 is the “leftmost” subsequence of fl
ds

consisting of elements of a cluster C ,
with at least a pair of k-indistinguishable occurrences of some descriptor element.

There exist two indexes i, j with j < i such that fl
ds2(j) and fl

ds2(i) are two k-indistinguishable
occurrences of some d œ C . By proposition 7, there is a pair iÕ, jÕ with jÕ < iÕ such that fl

ds2(jÕ) and
fl

ds2(iÕ) are consecutive k-indistinguishable occurrences of d. If there are many such pairs (even
for di�erent elements in C), let’s consider the one with the lower index iÕ (namely, precisely the
pair which is found earlier by the unravelling algorithm). By theorem 2, the two tracks associated
with fl

ds1 · fl
ds2(0, jÕ) and fl

ds1 · fl
ds2(0, iÕ), say fl̃1 and fl̃2, have the same B

k

-descriptor. Then, by

the right extension proposition 2, the tracks fl = fl̃2 · fl (for some fl) and flÕ = fl̃1 · fl have the same
B

k

-descriptor.
The algorithm in figure 6 does not return fl̃2 and, due to the backtrack step, neither fl = fl̃2 ·fl is

returned. But since lst(fl̃1) = lst(fl̃2) (fl
ds2(jÕ) and fl

ds2(iÕ) are occurrences of the same descriptor
element), the unravelling of K features flÕ = fl̃1 ·fl, as well. Now, by induction hypothesis, a track
flÕÕ of K is returned such that flÕ and flÕÕ have the same B

k

-descriptor, and |flÕÕ| Æ ·(|W |, k). fl
has in turn the same B

k

-descriptor as flÕÕ.

I. Proof of Lemma 3
Proof: The proof is by induction on the structure of Â. (Base cases). The cases in which

Â = €, Â = ‹, Â = p œ AP are trivial. (Inductive cases). The cases in which Â = ¬Ï, Â = Ï1 ·Ï2
are also trivial and omitted. We focus on the remaining cases.

• Â = ÈAÍ Ï. If K , fl̃ |= Â, then there exists fl œ TrkK such that lst(fl̃) = fst(fl) and K , fl |= Ï. By
theorem 5 the unravelling procedure returns fl œ TrkK such that fst(fl) = fst(fl) and fl and fl
have the same B

k

-descriptor, thus K , fl |= Ï. By inductive hypothesis, Check(K , k, Ï, fl) = 1,
hence Check(K , k, Â, fl̃) = 1.
Vice versa, if Check(K , k, Â, fl̃) = 1, there exists fl œ TrkK such that lst(fl̃) = fst(fl) and
Check(K , k, Ï, fl) = 1. By inductive hypothesis, K , fl |= Ï, hence K , fl̃ |= Â.

• Â = ÈAÍ Ï. The proof is symmetric to case Â = ÈAÍ Ï.
• Â = ÈBÍ Ï. If K , fl̃ |= Â, there exists fl œ Pref(fl̃) such that K , fl |= Ï. By inductive hypothesis,

Check(K , k ≠ 1, Ï, fl) = 1. Since all prefixes of fl̃ are checked, Check(K , k, Â, fl̃) = 1. Note
that, by definition of descriptors, if fl̃ is a track representative of a B

k

-descriptor D
Bk , a

prefix of fl̃ is a representative of a B
k≠1-descriptor, whose root is a child of the root of D

Bk .
Vice versa, if Check(K , k, Â, fl̃) = 1, then for some fl œ Pref(fl̃), Check(K , k ≠ 1, Ï, fl) = 1.
By inductive hypothesis K , fl |= Ï, hence K , fl̃ |= Â.

• Â = ÈBÍ Ï. If K , fl̃ |= Â, then there exists fl such that fl̃ · fl œ TrkK and K , fl̃ · fl |= Ï. If
|fl| = 1, since by induction hypothesis Check(K , k, Ï, fl̃ · fl) = 1, then Check(K , k, Â, fl̃) = 1.
Otherwise, the unravelling algorithm returns a track fl with the same B

k

-descriptor as fl.
Thus, by the left extension proposition 3, fl̃ · fl and fl̃ · fl have the same B

k

-descriptor.
Thus K , fl̃ · fl |= Ï. So (by inductive hypothesis) Check(K , k, Ï, fl̃ · fl) = 1 implying that
Check(K , k, Â, fl̃) = 1. Notice that, given two tracks fl, flÕ of K , if we are considering fl as the
track representative of the B

k

-descriptor of fl, and the unravelling algorithm returns flÕ as
the representative of the B

k

-descriptor of flÕ, since by lemma 2 fl ·flÕ and fl ·flÕ have the same
B

k

-descriptor, we have that fl·flÕ is the representative of the B
k

-descriptor of fl·flÕ. Vice versa,
if Check(K , k, Â, fl̃) = 1, there exists fl such that fl̃ · fl œ TrkK and Check(K , k, Ï, fl̃ · fl) = 1.
By inductive hypothesis, K , fl̃ · fl |= Ï, hence K , fl̃ |= Â.

• Â = ÈEÍ Ï. The proof is symmetric to case Â = ÈBÍ Ï.

J. Proof of Theorem 7
Proof: Let’s consider a language L decided by a non-deterministic one-tape Turing machine

M (w.l.o.g.) that halts after no more than 2n

k ≠ 3 computation steps on an input of size n—we
are assuming a su�ciently high constant k œ N—hence L belongs to NEXP.

Let � and Q be respectively the alphabet and the set of states of M and let # be a special
symbol not in � used as separator for configurations (in the following we let �Õ = � fi {#}).
The alphabet � is assumed to contain the blank symbol Û. As usual, a computation of M is
a sequence of configurations of M , where each configuration fixes the content of the tape, the
position of the head on the tape and the internal state of M .

(q0, c0) c1 c2 · · · · · · c
n≠1 Û Û · · · · · · Û #

cÕ
0 (q1, c1) c2 · · · · · · c

n≠1 Û Û · · · · · · Û #
...

...
...

...
· · · · · · (q

yes

, c
k

) · #
¸ ˚˙ ˝

2nk

Fig. 9. An example of computation table (tableau).

We exploit a standard encoding for computations called computation table (or tableau) (see
[23] for further details). Each configuration of M is a sequence over the alphabet � = �Õfi(Q◊�);
a symbol in (q, c) œ Q ◊ � occurring in the i-th position encodes the fact that the machine has
an internal state q and its head is currently on the i-th position of the tape (obviously exactly
one occurrence of a symbol in Q ◊ � occurs in each configuration). Since M halts after no more
than 2n

k ≠ 3 computation steps, M uses at most 2n

k ≠ 3 cells on its tape, so the size of a
configuration is 2n

k (we need 3 occurrences of the auxiliary symbol #, two for delimiting the
beginning of the configuration, and one for the end; additionally M never overwrites delimiters
#). If a configuration is actually shorter than 2n

k , it is padded with Û symbols in order to reach
length 2n

k (which is a fixed number, once the input length is known). Moreover, since M halts
after no more than 2n

k ≠ 3 computation steps, the number of configurations is 2n

k ≠ 3. The
computation table is basically a matrix of 2n

k ≠ 3 rows and 2n

k columns, where the i-th row
records the configuration of M at the i-th computation step.

As an example, a possible table is depicted in figure 9. In the first configuration (row) the head
is in the leftmost position (on the right of the delimiters #) and M is in state q0. In addition, we
have the string symbols c0c1 · · · c

n≠1 padded with occurrences of Û’s to reach length 2n

k . In the
second configuration, the head has moved one position to the right, c0 has been overwritten with
cÕ

0, and M is in state q1. From the first two rows, we can deduce that the tuple (q0, c0, q1, cÕ
0, æ)

belongs to the transition relation ”
M

of M (we assume that ”
M

™ Q ◊ � ◊ Q ◊ � ◊ {æ, Ω, •}
with the obvious standard meaning).

Following [23], we introduce the notion of (legal) window. A window is a 2 ◊ 3 matrix, in
which the first row represents three consecutive symbols of a possible configuration. The second
row represents the three symbols which are placed exactly in the same position in the next
configuration. A window is legal when the changes from the first to the second row are coherent
with ”

M

in the obvious sense. Actually, the set of legal windows, which we denote by Wnd ™!
�3"2, is a tabular representation of the transition relation ”

M

.
For example, two legal windows associated with the table of the previous example are:

(q0, c0) c1
cÕ

0 (q1, c1)
(q0, c0) c1 c2

cÕ
0 (q1, c1) c2

Formally, a ((x, y, z), (xÕ, yÕ, zÕ)) œ Wnd can be represented as

x y z
xÕ yÕ zÕ with x, xÕ, y, yÕ, z, zÕ œ �,

where the following constraints have to hold:
1) if all x, y, z œ �Õ (x, y, z are not state-symbol pairs), then y = yÕ;
2) if one of x, y and z belongs to Q ◊ �, then xÕ, yÕ and zÕ are coherent with ”

M

, and

3) (x = # ∆ xÕ = #) · (y = # ∆ yÕ = #) · (z = # ∆ zÕ = #).
As we said, M never overwrites a #; moreover we can assume the head never visits a #, as well
(see [23]). However, in some window, condition 2. would require to move the head right (or left)
overwriting # (or just visiting it), while 3. does not allow to replace a # with another symbol
(notice that (q

i

, #) does not belong to � for any state q
i

of M); in such a case the window is
not valid and so it is discarded (it doesn’t belong to Wnd).

In the following we define a Kripke structure K = (AP , W, ”, µ, w0) and an HS[A, A, B, B, E]
formula Â such that K |= Â if and only if M accepts its input string c0c1 · · · c

n≠1. The set of
propositional letters is AP = � fi �3 fi {start}. The Kripke structure K is obtained by suitably
composing a basic pattern called gadget. An instance of the gadget is associated with a triple of
symbols (a, b, c) œ �3 (i.e. a sequence of three adjacent symbols in a configuration) and consists
of 3 states: q0

(a,b,c), q1
(a,b,c), q2

(a,b,c) such that

µ
1

q0
(a,b,c)

2
= µ

1
q1

(a,b,c)

2
= {(a, b, c), c}

and
µ

1
q2

(a,b,c)

2
= ÿ.

Moreover,
”

1
q0

(a,b,c)

2
=

Ó
q1

(a,b,c)

Ô
and ”

1
q1

(a,b,c)

2
=

Ó
q2

(a,b,c)

Ô
.

The underlying idea is that a gadget associated with (x, y, z) œ �3 “records” the current
proposition letter z, as well as two more “past” letters (x and y).

q

0
(a,b,c)

(a, b, c), c
q

1
(a,b,c)

(a, b, c), c
q

2
(a,b,c)

ÿ
...

...

...

Fig. 10. An instance of the described gadget for (a, b, c) œ �3.

The Kripke structure K has (an instance of) a gadget for every (x, y, z) œ �3 and for all
(x, y, z) and (xÕ, yÕ, zÕ) in �3, we have q0

(x

Õ
,y

Õ
,z

Õ) œ ”
1

q2
(x,y,z)

2
if and only if xÕ = y and yÕ = z.

Moreover K has some additional (auxiliary) states w0, · · · , w6 described in figure 11 and ”(w6) =Ó
q0

(#,#,x) | x œ �
Ô

. Notice that the overall size of K only depends on |�| and it is constant w.r.t.
to the input string c0c1 · · · c

n≠1 of M .
Now we want to decide whether an input string belongs to the language L by solving the

model checking problem K |= start æ ÈAÍ › where › is satisfied only by tracks which represent
a successful computation of M . Since the only (initial) track which satisfies start is w0w1, we
are actually verifying the existence of a track which begins with w1 and satisfies ›.

w0
start

w1
start, #

w2
#

w3
ÿ

w4
#

w5
#

w6
ÿ

...

...

...

Fig. 11. Initial part of K .

As for ›, it demands that a track fl, for which K , fl |= › (with fst(fl) = w1), mimics a successful
computation of M in this way: every interval fl(i, i+1), for i mod 3 = 0, satisfies the proposition
letter p œ AP if and only if the i

3 -th character of the computation represented by fl is p (notice
that as a consequence of the gadget structure, only fl’s subtracks fl = fl(i, i + 1) for i mod 3 = 0
can satisfy some proposition letters). A symbol of a configuration is mapped to an occurrence of
an instance of a gadget in fl; fl, in turn, encodes a computation of M through the concatenation
of the first, second, third. . . rows of the computation table (two consecutive configurations are
separated by 3 occurrences of #, which require 9 states overall).

Let’s now define the HS formula ›:

› = Â
accept

· Â
input

· Â
window

where
Â

accept

= ÈBÍ ÈAÍ
fl

aœ�
(q

yes

, a)

and it requires a track to contain an occurrence of the accepting state of M , q
yes

; Â
input

is a
bit more involved and demands that the subtrack corresponding to the first configuration of M
actually “spells” the input c0c1 · · · c

n≠1, suitably padded with occurrences of Û and terminated
by a # (in the following, ¸(k), introduced in Section II, is satisfied only by those tracks whose
length equals k (k Ø 2) and it has a binary encoding of O(log k) bits):

Â
input

= [B]
1

¸(7) æ ÈAÍ(q0, c0)
2

· [B]
1

¸(10) æ ÈAÍ c1
2

· [B]
1

¸(13) æ ÈAÍ c2
2

·
...

[B]
1

¸(7 + 3(n ≠ 1)) æ ÈAÍ c
n≠1

2
·

[B]
A

ÈBÍ5+3n € · [B]3·2nk
≠6‹ æ ÈAÍ

31
¸(2) ·

fi

aœ�
¬a

2
‚ Û

4B
· [B]

1
¸
!
3 · 2n

k

≠ 2
"

æ ÈAÍ #
2

.

Finally Â
window

enforces the window constraint: if the proposition (d, e, f) œ �3 is witnessed
in a subinterval (of length 2) in the subtrack of fl corresponding to the j-th configuration of

M , then in the same position of (the subtrack of fl associated with) configuration j ≠ 1, some
(a, b, c) œ �3 must be there, such that ((a, b, c), (d, e, f)) œ Wnd.

Â
window

= [B]
A

fi

i=2,··· ,t

fi

(d,e,f)œ�3

1
¸(3 · 2n

k

+ 3i + 1) · ÈAÍ(d, e, f)

æ [B]
!
¸(3i + 1) æ

fl

((a,b,c),(d,e,f))œW nd

ÈAÍ(a, b, c)
"2B

.

where t = 2n

k · (2n

k ≠ 4) ≠ 1 is encoded in binary.
All the integers which need to be stored in the formula are less than (2n

k)2, thus they need
O(nk) bits; in this way the formula can be generated in polynomial time.

Finally, if the succinct encoding of formulas is not allowed, the proof is basically a simplification
of the above one, but we have to restrict ourselves to computations of non-deterministic Turing
machines using at most polynomial time.

	Introduction
	Background Knowledge
	The interval temporal logic HS
	Kripke structures and abstract interval models
	The notion of Bk-descriptor

	Clusters and descriptor element indistinguishability
	Track representatives
	The model checking algorithm
	Conclusion and future work
	References
	Appendix
	Proof of Proposition 1
	Proof of Lemma 2
	Proof of Proposition 6
	Proof of Proposition 7
	Proof of Theorem 2
	Proof of Proposition 9
	Proof of Theorem 3
	Proof of Theorem 5
	Proof of Lemma 3
	Proof of Theorem 7

