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Abstract

We propose a family of Markov chain-based models for the link analysis of scientific publications.
The PageRank-style model and the dummy paper model discussed in [4] can be obtained by the suitable
instantiation of its parameters. Since scientific publications can be ordered by the date of publication it
is natural to assume a triangular structure for the adjacency matrix of the citation graph. This greatly
simplify the updating of the ranking vector if new papers are added to the database. In addition by
assuming that the citation graph can be modeled as a fixed degree random sequence graph we can obtain
an explicit estimation of the behavior of the entries of the ranking vector.
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1. Introduction

Link analysis aims at exploring the information cached in large datasets organized as graphs or net-
works, to infer certain relationships between linked data [8, 9]. Starting from the two papers [6, 11]
link analysis changed the information retrieval scene in many respects, in particular by improving the
effectiveness of search engines, that became able to rank by importance the retrieved information, in an
efficient and query independent way. In fact, it is usual to model web surfing as a Markov chain, where
the states are the web pages or the sites and a transition probability is associated with every hyperlink.
To enforce irreducibility (and then guarantee the existence of a unique invariant distribution) the pop-
ular PageRank algorithm modifies the chain by allowing random jumps, performed with a prescribed
probability usually tuned by means of a parameter 0 ! α < 1, from every node to every other one. In
this model, ranking is related to the mean time spent in every node by a random surfer and is obtained
by computing the invariant probability vector of the modified chain and comparing its entries. Since the
Web is not static, great attention has been paid to the problem of the influence on PageRank of link and
node updating [3, 14]. For a comprehensive introduction see [13].

Recently link analysis has been proposed also as a tool for ranking scientific authors and products,
see e.g. [4, 5, 15] and the references therein. Usually, these models rely on suitable Markov chains
obtained from relationships between papers, authors, and journals. For example, a collection of papers
can be described as a citation graph, where every citation corresponds to an arc endowed by a positive
transition probability. Random walks on that graph give rise to a Markov chain. In [4] the chain is
modified by adding a dummy paper which cites and is cited by all the papers in the collection. With this
addition, the chain becomes irreducible, and a meaningful ranking can be obtained by computing the
invariant probability vector of the modified chain. For shortness, we will refer to this as to the dummy
paper model. We note that in [15] link analysis is used in an indirect way in order to obtain improved
version of indicators such as impact factor or h-index and the dummy paper is used to solve the problem
of citation outside the database.

In this paper we show that the random jump and the dummy paper models belong to a wider family
of models depending on n parameters 0 ! αi < 1, where i = 1, . . . , n and n is the number of papers.
The parameters tune the probability of the random jump in such a way that it can be different for
every state. This can be used to obtain some form of control the models as simple examples show. In
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addition, working with papers, it is quite natural to assume a triangular structure in the adjacency matrix
that reflects the chronological order of their publication. By making this assumption, and following the
approach suggested in [8, 9], we will perform an average analysis of the family of models by making the
assumptions that the citation graph can be modeled as a fixed degree sequence random graph [1, 8, 9].
In this way we obtain an explicit estimate of the behavior of the entries of the ranking vector for the
models of the family.

The paper is organized as follows. In Section 2 we recall the now classical model based on random
jumps, introduce the dummy paper model and compare them, showing how they can be obtained by
properly instantiating certain parameters spanning a family of models. In Section 3 we discuss a couple
of examples where the adjacency matrix is chosen with triangular structure. In Section 4 the triangular
structure is exploited in order to study in a direct way the problem of node update. In Section 5 we will
present an average analysis of the family of models. The last section discusses an obsolescence mechanism
that dampens the relevance of older papers.

2. A family of models

Given n papers numbered from 1 to n, let A = (ai,j) be the n× n matrix such that ai,j = 1 if paper
i cites paper j, and ai,j = 0 elsewhere. This matrix is the adjacency matrix of the citation graph of the
paper collection. Moreover, let e be the vector of appropriate order whose entries are all ones, and let
a = Ae, a = (a1, . . . , an)T . The entry ai counts the number of papers cited by paper i.

We want to define a meaningful ranking of a set of papers, based on the invariant probability vector of
a suitable Markov chain describing random walks on the citation graph. We recall that primitive Markov
chains ensure uniqueness, positivity, and ergodicity of the invariant probability vector [13]. For that
reason, primitivity is forced in generic Markov chains usually by means of one of two main techniques,
see [12, Sect. 6.3], that are described in what follows.

2.1. The random jump model
In the PageRank algorithm, link-following navigation on the graph is interleaved by random jumps

to uniformly chosen nodes [6, 13]. This idea is implemented by a suitable modification of the transition
matrix, obtained as follows: We define the vector w = (wk) where, for k = 1, . . . , n

wk =
{

1, ak = 0;
0, otherwise.

and we construct the matrix Â = A + weT . Let us set ∆ = Diag(δk), where

δk =
{

1/n, if ak = 0;
1/ak, otherwise.

Then, the matrix ∆Â is row stochastic. Let 0 ! α < 1 be a real parameter and let us consider the convex
combination,

G = α∆Â +
1− α

n
eeT . (1)

The matrix G is positive and, by virtue of Perron theorem, see [13], there exists a unique positive vector
π such that πT e = 1 and πT G = πT . The vector π is the invariant probability vector of the Markov chain
that G represents, and its entries can be used for ranking purposes.

2.2. The dummy paper model
A different technique is the one described in [12, Sect. 6.3] and exploited e.g., in [4, 5]. It involves

the addition of an auxiliary node to the starting graph, hence it is particularly suited for citation graphs.
We will refer to the added node interchangeably as the dummy node or dummy paper. Starting with the
adjacency matrix A we introduce a dummy paper in such a way that the new adjacency matrix is

(
A e
eT 0

)
.
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Hence, the dummy paper cites and is cited by all other papers. Furthermore, let

D = Diag(dk), dk =
1

1 + ak
.

Then
P =

(
DA De
1
neT 0

)
(2)

is row stochastic. Moreover, apart the trivial case where A = O, the matrix P is primitive: actually it
is easy to show that P 4 is positive, i.e., there is a path of exactly four steps between any two nodes of
the augmented citation graph. Since Perron theorem holds for primitive matrices, the normalized (left)
Perron vector of P has positive components and can be seen as a ranking vector for the considered paper
set.

2.3. A generalized model
In what follows, we define a family of models to construct a primitive Markov chain, starting from an

arbitrary citation graph. The random jump model and the dummy paper model occur as special cases
within this family.

Recall that the censored chain associated to a subset S of states of a given a Markov chain is the
chain that records the location of the parent chain only when the parent chain visits states in S, see e.g.,
[13, 14]. The transition matrix of the censored chain is the stochastic complement of the matrix of the
parent chain relative to the states in S, and its invariant probability vector is obtained by normalizing
the subvector relative to the states in S of invariant probability vector of the parent chain.

In the dummy paper model, the stochastic complement of the matrix P in (2) relative to all the
papers except the dummy one is

Q = DA +
1
n

DeeT . (3)

A different representation of Q is presented in the forthcoming theorem:

Theorem 1. Using the notations introduced in §2.1, if we let Dα = Diag( ak
1+ak

), then the matrix Q in
(3) can be expressed as

Q = Dα∆Â +
1
n

(I −Dα)eeT .

Proof. We have Dα∆A = DA (altough Dα∆ #= D) and I − Dα = D. Moreover, Dαw = 0. Using
commutativity of diagonal matrices we have

Dα∆Â +
1
n

(I −Dα)eeT = Dα∆(A + weT ) +
1
n

(I −Dα)eeT

= Dα∆A + Dα∆weT +
1
n

(I −Dα)eeT

= DA +
1
n

(e + Dα(w − e))eT = DA +
1
n

DeeT ,

and the claim follows from (3).

As a result, the matrix Q in (3) can be seen as a variant of the PageRank-style matrix (1), where the
scalar α is replaced by a suitable diagonal matrix; the probability of performing the random jump now
depends on the starting node in such a way that it diminishes when the number of references increases.

Hence the random jump model and the dummy paper model belong to the family of Markov chains
associated to the parametrized matrix

Γ = Dα∆Â +
1
n

(I −Dα)eeT , (4)

where now the matrix Dα has the more general definition Dα = Diag(αi) with i = 1, . . . , n and 0 ! αi < 1.
The random walk interpretation of the Markov chain associated to Γ is straightforward: the parameter αi

represent the probability of not performing a random jump starting from node i. As stated in Theorem
1, by choosing αi = ai/(1 + ai) for i = 1, . . . , n we have Γ = Q in (3), while by choosing αi = α for
i = 1, . . . , n then Γ = G, see (1). By the same arguments that are well known in the PageRank setting,
a left Perron vector of Γ can be computed by solving a linear system:
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Theorem 2. Let π be the left Perron vector of Γ, such that πT Γ = πT and πT e = 1. Moreover, let x be
the solution of

xT (I −Dα∆A) = eT . (5)

Then,

xT =
1

πT Dα∆w + 1
nπT (I −Dα)e

πT .

Proof. The claim follows by simple adaptations of the arguments found e.g., in [12, Sect. 5.2].

As a consequence, for ranking purposes x is equivalent to π. Moreover, since by construction
||Dα∆A||∞ < 1, we have

Z = (I −Dα∆A)−1 =
∞∑

k=0

(Dα∆A)k, (6)

so that

xT = eT Z = eT
∞∑

k=0

(Dα∆A)k.

In particular, this explicit expression implies that xi " 1 for i = 1, . . . , n. Furthermore, if ai = 0 then αi

does not influence the ranking in any way. Hence, we can safely assume that αi = 0 whenever ai = 0.

3. The triangularity assumption

Considering the ranking of scientific publications, it is quite natural to assume that nodes and arcs
are added to the citation graph on a chronological basis, and that newer nodes can link only to older
nodes. Hence, in what follows we assume that the resulting graph is acyclic. As a consequence, the nodes
can be numbered so that the incidence matrix A is strictly upper triangular, and we can use the equation
(5) in order to express x as a function of the αi.

Hereafter, we present a couple of examples in order to compare the orderings obtained by different
models of the family.

Example 1. Consider the case of a linear chain of n papers, where every publication cites the next one.
The resulting adjacency matrix is

A =





0 1

0
. . .
. . . 1

0




. (7)

Clearly,

I −Dα∆A =





1 −α1

1
. . .
. . . −αn−1

1




,

so that the solution of (5) is

x1 = 1, xi = 1 + αi−1xi−1 =
i−1∑

j=0

i−1∏

k=i−j

αk, i = 2, . . . , n.

If αi = α > 0 for i = 1, . . . , n− 1 then

xi =
i−1∑

k=0

αk =
1− αi

1− α
, (8)

so that 1 = x1 < x2 < . . . < xn. This solution includes both the random jump model and the dummy
paper model, where in this specific example we have αi = 1/2 for i = 1, . . . , n− 1. On the other hand, let

4



2 ! p < n and let us assume that αi = α > 0 for i = 1, . . . , p − 1 and αi = β > 0 for p ! i ! n. Then
(8) holds for i = 1, . . . , p while

xp+k =
1− βk

1− β
+ βk 1− αp

1− α
=

1
1− β

+ βk

(
1− αp

1− α
− 1

1− β

)
, k = 0, . . . , n− p.

We observe that if
1− αp

1− α
− 1

1− β
> 0

i.e., if

β < α
1− αp−1

1− αp
,

then xp > xp+1 > . . . > xn. This suggests that a suitable tuning of the coefficients αi can be useful, for
example, in order to introduce time dependent features (e.g., obsolescency) in these models.

Our second example illustrates how different parameter choices may modify the overall ranking of the
papers:

Example 2. Let us consider the adjacency matrix

A =





0 1 1 0 1 0
0 0 1 0 0 0
0 0 0 1 1 0
0 0 0 0 0 1
0 0 0 0 0 0
0 0 0 0 0 0




.

Then

I −Dα∆A =





1 −α1
3 −α1

3 0 −α1
3 0

0 1 −α2 0 0 0
0 0 1 −α3

2 −α3
2 0

0 0 0 1 0 −α4

0 0 0 0 1 0
0 0 0 0 0 1




,

so that the linear system (5) becomes x1 = 1 and





x2 = 1 + α1
3 x1

x3 = 1 + α1
3 x1 + α2x2

x4 = 1 + α3
2 x3

x5 = 1 + α1
3 x1 + α3

2 x3

x6 = 1 + α4x4.

It is easy to show that if αi = α for i = 1, . . . , 4 then x3 > x5 > x4 > x2 > x1 and x6 > x5. However,

x6 > x3 ⇐⇒ x1 + αx4 > x3 ⇐⇒ x1 + αx1 +
α2

2
x3 > x3 ⇐⇒ (1 + α)x1 > (1− α2

2
)x3

and since x3 = (1 + α)x2 = (1 + α)(1 + α/3)x1 we obtain

x6 > x3 ⇐⇒ α2 + 3α− 2 > 0.

Hence x6 > x3 for (−3 +
√

17)/2 < α < 1, while for 0 < α < (−3 +
√

17)/2 then x3 > x6. In the dummy
paper model α1 = 3/4, α2 = 1/2, α3 = 2/3, α4 = 1/2 so that we obtain x3 = x5 > x6 > x4 > x2 > x1.
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4. Node update

In this section we study how the rankings vary if a new paper is added to the database. The same
problem is faced in [4, 14]; our approach can be much more direct in the view of the triangularity structure
of the adjacency matrix. Here, the triangularity of the adjacency matrix corresponds to the assumption
that the added paper does not receive citations from the previous papers.

Let us start from a collection of n papers, with scores xT = (x1, . . . , xn) given by (5). To this
collection, we add a new paper citing m " 1 papers in the collection (the case m = 0 is trivial). If we
give the index 1 to the new paper and shift the others accordingly, the new adjacency matrix takes the
form

Ã =
(

0 bT

0 A

)
.

Introducing the notations

D̃α =
(

α̃ 0
0 Dα

)
, δ̃ =

1
m

, ∆̃ =
(

δ̃ 0
0 ∆

)
, (9)

the updated transition matrix is

Γ̃ = D̃α∆̃Ã +
1

n + 1
(I − D̃α)eeT .

Owing to Theorem 2, the normalized Perron vector of Γ̃ is a multiple of the score vector x̃T = (x̃1, . . . , x̃n+1)
given by x̃T = eT Z̃, where

Z̃ = (I − D̃α∆̃Ã)−1 =
(

1 −α̃δ̃bT

0 I −Dα∆Ã

)−1

=
(

1 α̃δ̃yT

0 Z

)
, yT = bT Z.

Obviously 1 = x̃1 ≤ x̃i for i = 2, . . . , n+1, as the added paper receives no citations. If we let x̃T = (1, x̂T )
then the vector x̂T = (x̂1, . . . , x̂n) contains the updated scores of the preexisting papers, and we have the
updating formula

x̂T = xT + α̃δ̃yT . (10)

Note that, if b = e then yT = xT so that x̂ = (1 + α̃δ̃)x and the earlier ordering of the papers in the
collection (before the addition of the new paper) is not altered. In what follows, we analyze the effect of
the new citations in the general case. Before our main results, we need a couple of preliminary lemmas:

Lemma 1. Let U " 0 be a strictly upper triangular matrix of order n such that ‖U‖∞ < 1. Let
V = (I − U)−1. Then Vii = 1 for i = 1, . . . , n and 0 ! Vij < 1 for 1 ! i < j ! n.

Proof. Partition

U =
(

0 uT

Û

)
, V =

(
1 vT

V̂

)
=

(
1 −uT

I − Û

)−1

.

Then V̂ = (I − Û)−1 hence for 2 ! i ! j ! n we obtain the claim by an inductive argument. Moreover,
from (I − U)V = I we get vT = uT V̂ , whence

vi =
n∑

j=1

uj V̂ji ! max
j

V̂ji

n∑

j=1

uj < 1,

and the proof is over.

Lemma 2. The matrix Z ≡ (zij) given by (6) is unit upper triangular, with 0 ! zij < 1 for 1 ! i < j !
n. Moreover, if xT = eT Z and i #= j then we have zij < xj/xi.

Proof. The first part of the claim follows from Lemma 1. To prove the secon part, let 1 ! i < j ! n
and consider the partitioning

Z =
(

Z11 Z12

Z22

)
, I −Dα∆A =

(
I − P11 −P12

I − P22

)
,
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where the upper leftmost blocks have order i × i. From (I − P11)Z12 − P12Z22 = O we have Z−1
11 Z12 =

P12Z22 " O. Now, since Z11 is unit upper triangular, we have that

xizij = xie
T
i

(
I Z−1

11 Z12

Z22

)
ej ! (x1, . . . , xi, 0, . . . , 0)

(
I Z−1

11 Z12

Z22

)
ej .

Moreover, (x1, . . . , xi) = eT Z11. Hence we have:

xizij ! (eT Z11, 0T )
(

I Z−1
11 Z12

Z22

)
ej = (eT , 0T )

(
Z11

I

) (
I Z−1

11 Z12

Z22

)
ej

= (eT , 0T )Zej < eT Zej = xj .

The case where j < i is straightforward.

Remark that, in the componentwise sense, x̂−x = α̃δ̃y " 0, that is, the updated scores are not smaller
than the older ones. The forthcoming theorem establishes a quantitative result comparing the increase
in score of non cited papers with respect to that of the cited ones, both in relative and in absolute sense:

Theorem 3. Let I = {i1, . . . , im} ⊂ {1, . . . , n}, let b =
∑

i∈I ei, and let j /∈ I = {i1, . . . , im}. In the
previously introduced notations we have:

1. x̂j − xj < α̃ ! ∑
i∈I(x̂i − xi), with equality when m = 1;

2. Let ξ the harmonic mean of xi1 , . . . , xim ,

ξ =
m∑

i∈I 1/xi
.

Then, (x̂j − xj)/xj <
∑

i∈I(x̂i − xi)/ξ.

Proof. Firstly, observe that for any 1 ! j ! n

yj = yT ej =
∑

i∈I
eT
i Zej =

∑

i∈I
zij .

From the updating formula (10) and Lemma 2, we obtain

∑

i∈I
x̂i − xi =

α̃

m

∑

i∈I

∑

k∈I
zki " α̃

m

∑

i∈I
zii = α̃.

For j /∈ I, using again Lemma 2 we have
∑

i∈I zij < m, hence

x̂j − xj =
α̃

m

∑

i∈I
zij < α̃,

and the proof of the first part of the claim is complete. Furthermore, from zij < xj/xi,

x̂j − xj

xj
=

α̃

m

∑

i∈I

zij

xj
<

α̃

m

∑

i∈I

1
xi

=
α̃

ξ
! 1

ξ

∑

i∈I
x̂i − xi,

and the proof is over.

We observe that, when m = 1 and I = {i}, the results in the foregoing theorem take the simple form

x̂j − xj < α̃ = x̂i − xi,
x̂j − xj

xj
<

x̂i − xi

xi
,

for all j #= i. In particular, in the overall ranking of the collection, the position of the ith paper cannot
decrease. The rightmost inequality, in the equivalent form x̂j/xj < x̂i/xi, can also be traced in [4] for
the dummy paper model.
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5. An average case analysis

In this section we perform an average case analysis of a special family of triangular random graphs,
following the strategy suggested in [8, 9]. Our goal is to obtain asymptotic estimates on the behaviour of
the solution of (5) on large citation graphs. In the random jump model, analogous results can be found
in [2, 10], where asymptotic or average properties of PageRank scores are obtained for families of large,
direct acyclic graphs, under additional simplifying assumptions on the node degrees.

In a probabilitic setting, we suppose that for any two papers 1 ! i < j ! n, the arc i → j may exist
or not, according to a certain probability that we denote by P(i → j), to be better specified later. More
precisely, we consider each entry of the adjacency matrix A as a random variable Aij whose distribution is
binomial with parameter P(i → j); the arc i → j exists if and only if Aij = 1. We compute the mean value
〈U〉 of U = Dα∆A and we consider the properties of the solution of the linear system xT (I − 〈U〉) = eT ,
corresponding to (5). Although this vector cannot be interpreted as a mean Perron vector of the family,
it gives some insight on what can be expected in an average case.

In what follows, we analyze the case where we are given the numbers 0 ! ai < n− i that denote the
out-degree of node i, that is, the numbers of papers cited by paper i. The nonzero entries in the i-th row
of U are spread uniformly in the positions i + 1, . . . , n, and we have

P(i → j) =
ai

n− i
, 1 ! i < j ! n.

It this way the citations form a fixed degree sequence random graph [1, 8, 9].

Theorem 4. Suppose that the citation graph belongs to a fixed degree sequence family of random graphs
defined by the degree sequence a1, . . . , an, with 0 ! ai < n− i and αi = 0 if ai = 0. Let x be the solution
of the linear system xT (I − 〈U〉) = eT . Then, there exists a number mini αi ! ρ ! maxi αi such that

1 = x1 ! x2 ! · · · ! xn ! (en)ρ.

Proof. In the case where ai #= 0, then for 1 ! i < j ! n, the entry Uji is a random variable that assumes
the value αi/ai with probability P(i → j), and 0 otherwise. Hence, the mean value of the (i, j)-entry in
the strictly upper triangular part of U is

〈U〉ij =
αi

ai
P(i → j) =

αi

n− i
.

Due to the assumption that αi = 0 if ai = 0 this formula holds also in the case where ai = 0. Therefore,

I − 〈U〉 =





1 β1 β1 · · · β1

1 β2 · · · β2

1
. . .

...
. . . βn−1

1




, βi = − αi

n− i
.

By direct substitution one can show that the solution of the linear system xT (I − 〈U〉) = eT is

x = (x1, . . . , xn)T , x1 = 1, xi =
i−1∏

j=1

(1− βj) =
i−1∏

j=1

(
1 +

αj

n− j

)
. (11)

We have that 1 = x1 ! x2 ! · · · ! xn, with equality in the k-th place if and only if αk = 0. Let

ρ =

(
n−1∑

i=1

αi

n− i

)/ (
n−1∑

i=1

1
n− i

)
.

Clearly, we have mini αi ! ρ ! maxi αi, with strict inequalities for mini αi #= maxi αi. From log(1+ε) ! ε
and

∑n−1
i=1 1/i ! 1 + log n, we get

log xn !
n−1∑

i=1

αi

n− i
= ρ

n−1∑

i=1

1
n− i

! ρ(1 + log n).
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The claim follows by taking exponentials.

Hence, the vector x computed above assigns a paper score which depends essentially on age. We note
that the largest component diverges almost linearly, while the number of citations received by the oldest
paper grows only logarithmically, whenever the degree sequence a1, a2, . . . is bounded. Indeed,

n−1∑

i=1

P(i → n) =
n−1∑

i=1

ai

n− i
! (1 + log n) max

k
ak.

The forthcoming corollary shows an upper bound on the entries of the ranking vector, that does not
depend neither on the degree sequence {ai} nor on the parameters αi:

Corollary 1. In the notations of the preceding theorem, we have

1 ! xi <
i−1∏

j=1

(
1 +

1
n− j

)
=

n

n− i + 1
, i = 2, . . . , n.

Proof. Use αi < 1 into the rightmost equation of (11).

6. Including obsolescence

As it is apparent from the previous arguments, in a cycle-free citation graph older papers tend to
dominate over younger papers by drawing a considerable part of the overall score. To mitigate this
outcome, we can introduce in our model an obsolescency mechanism that, while keeping track of all past
citations, assign a larger relevance to papers that get cited by recently added papers.

We explain this idea using the “incremental” setting of Section 3: While adding a new paper to a
collection, we replace all the current values of the parameters αi by θαi, where 0 < θ < 1 is a decay
factor accounting for the lack of interest of older papers due to the arrive of newest one; this modification
consist in replacing the definition of D̃α in (9) by

D̃α =
(

α̃
θDα

)
.

More sophisticated time awareness schemes, where the obsolescence factor θ depends on the year of
publication of each paper, are considered in [7]. The previously discussed, time oblivious model is
recovered for θ = 1.

The following example shows the effect of this simple decaying scheme on the linear chain considered
in Example 1:

Example 3. If the adjacency matrix of the citation graph is the same as in (7) and αi = α > 0 for
i = 1, . . . , n− 1, then the solution of (5) obeys the recurrence relation

x1 = 1, xi = 1 + αθi−1xi−1, i = 2, . . . , n.

Simple passages show that limi→∞ xi = 1. Moreover, for θ < 1/(1 + α) one has 1 + αθ = x2 > . . . > xn.

Our last result addresses the impact of a nontrivial obsolescence factor on the average case analysis
as carried out in the previous section. The conclusion is that, whilst paper score still grows with age, the
largest score is now bounded by a constant that does not depend on n:

Corollary 2. In the same hypotheses and notations of Theorem 4, if the obsolescence factor 0 < θ < 1
is inserted into the model, then

1 = x1 ! x2 ! · · · ! xn < exp(1/(1− θ)).

Proof. It is sufficient to observe that the time aware model corresponds to a time oblivious model
with αj replaced by αjθj−1. To get the upper bound, use the inequalities αjθj−1/(n − j) < θj−1 and
log(1 + ε) ! ε in the rightmost equation of (11).
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