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Università degli Studi di Udine
Via delle Scienze 208, I-33100 Udine, Italy

rossana.vermiglio@uniud.it

Abstract

In this paper we propose a nonlinear model to describe the dynamics of more
interacting populations or species which generalizes the Gurtin-MacCamy one and
we present some numerical results.

1 Introduction
In this paper we propose a nonlinear model to describe the dynamics of more inter-
acting populations or species which generalizes the Gurtin-MacCamy one. The idea is
that the basic dynamics of each populations is well-describe by the Gurtin-MacCamy
model, but we also want to take into account how the vital rates can be influenced by
the presence of other populations or species. This report is the result of the master’s
thesis [19]. In the first part we give the basic results on existence and uniqueness of
solutions, while the second part is devoted on some numerical experiments.

2 The Model
Let us consider a population consisting of d species with age structure. The dynamics
of such population is described at time t by the following vector-valued age density
function:

p(t, a) ∈ Rd, t ≥ 0, a ∈ [0, a†],

where a† denotes the maximum age of survival among all the species. To consider the
biologically more realistic situation in which all the species of the population have a
finite life-span, we assume that maximum age a† is finite.

The equations governing the dynamics of the population generalize the nonlinear
Gurtin-Mac Camy model (see [13]) as follows
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∂p

∂t
(t, a) +

∂p

∂a
(t, a) + µ(t, a, S(t))p(t, a) = 0, a ∈ [0, a†), t > 0, (1)

p(t, 0) =

∫ a†

0
β(t, a, S(t))p(t, a)da, t ≥ 0, (2)

S(t) =
∫ a†
0 γ(a)p(t, a)da, t ≥ 0, (3)

where
γ : [0, a†] → Rn×d,

and S(t) ∈ Rn. The n components of S(t) are called sizes and represent different ways
of weighting the age distributions.

Concerning the vital rates, we assume that the diagonal elements of the mortality
matrix µ(t, a, S) ∈ Rd×d, describing the mortality of the species, are separable into
two terms, i.e.

µii(t, a, S) = µ(0)
i (a) + µ(1)

i (t, a, S), i = 1, ..., d. (4)

The functions µ(0)
i , i = 1, ..., d, in (4) denote the ”natural” death rate of the i-th specie

and are unbounded to take into account a maximum age a†, i.e.

∫ a†
0 µ(0)

i (a)da = +∞, i = 1, ..., d. (5)

By introducing the diagonal matrix

µ(0)(a) = diag(µ(0)
1 (a), ...µ(0)

d (a)), (6)

the mortality matrix µ can be also represented as follows

µ(t, a, S) = µ(0)(a) + µ(1)(t, a, S), (7)

where µ(0)(a) ∈ Rd×d is the intrinsic mortality matrix and µ(1)(t, a, S) ∈ Rd×d is the
external mortality matrix.

Moreover we assume that either the external mortality matrix or the fertility ma-
trix β(t, a, S) ∈ Rd×d include seasonality through the dependence on the time t and
resource competition through the dependence on S.

Let us introduce some notations. In the vector space Rd we will consider the
norm |x| =

∑d
i=1 |xi|, x ∈ Rd, which is more natural for population problems,

while the linear space of d × d matrices is equipped with the induced norm |M | =
max|x|=1 |Mx|, M ∈ Rd×d.

Since
n(t) =

∫ a†

0
p(t, a)da

is the vector-valued function whose components give the total number of individuals of
each species in the population at time t, we should have p(t, ·) ∈ X = L1([0, a†);Rd),
i.e. the space of all (equivalent classes of) Rd-valued measurable functions ϕ defined
and absolutely integrable in [0, a†) equipped with the norm

‖ϕ‖X :=

∫ a†

0
|ϕ(a)|da.
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Moreover Rd
+ and X+ denote respectively cone of vectors and functions with nonneg-

ative components.
Let T > 0 and define the Banach space CT = C([0, T ], X) with the norm

||p||T = sup
0≤t≤T

||p(t)||X , p ∈ CT .

Each element of CT can be identified in a natural way with an element of L1([0, T ] ×
[0, a†),Rd) and we will use the same symbol p to denote both elements, i.e.

p(t)(a) = p(t, a), a.e. a ∈ [0, a†), t ∈ [0, T ],

(see [27]). In the sequel we will consider also the spaces L1,∞([0, a†);Rm×n), i.e. the
space of all (equivalent classes of) Rm×n-valued measurable functions M defined in
[0, a†) equipped with the norm

||M || = ‖|M |‖1,∞. (8)

In the contest of populations only positive solutions have significance and therefore,
given a nonnegative funcion p0 ∈ X+, we are interested to provide a result on the
existence and uniqueness of a positive solution of the problem (1)-(2)-(3) under the
initial condition

p(0, a) = p0(a), a.e. a ∈ [0, a†). (9)

For all T > 0, we assume that

(H1) the matrix
γ : [0, a†] → Rn×d,

belongs to L∞([0, a†];Rn×d) and it is a.e. nonnegative;

(H2) the fertility matrix

β : [0, T ]× [0, a†]× Rn → Rd×d

is such that

– β(t, a, S) is nonnegative a.e. on [0, T ]× [0, a†]× Rn,

– t → β(t, ·, ·) is continuous on [0, T ],

– a → β(·, a, ·) belongs to L∞([0, a†];Rd×d),

– S → β(·, ·, S) is locally Lipschitz continuous, i.e. there exists an increas-
ing function Kβ : [0,+∞) → [0,+∞) such that, if S, S̄ ∈ Rn,|S|, |S̄| ≤
ρ, then

|β(t, a, S)− β(t, a, S̄)| ≤ Kβ(ρ)|S − S̄|, a.e a ∈ [0, a†], t ∈ [0, T ],

– there exists an increasing function β∗ : [0,+∞) → [0,+∞) such that

|β(t, a, S)| ≤ β∗(|S|), a.e.a ∈ [0, a†], t ∈ [0, T ], S ∈ Rn;

(H3) the mortality matrix

µ : [0, T ]× [0, a†]× Rn → Rd×d

is such that
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o (4) holds and thus it an be represented as the sum of the internal mortality
matrix µ(0) and the external mortality µ(1) as in (7),

o the functions µ(0)
i ∈ L1

loc([0, a†);R), i = 1, ..., d, are a.e. nonnegative and
moreover ∫ a†

0
µ(0)
i (a)da = +∞, i = 1, ...d, (10)

o the functions µ(1)
i (·, a, ·) belongs to L1([0, a†],R)i = 1, ..., d

o t → µ(t, ·, ·) is continuous on [0, T ],

o there is an increasing function K1 : [0,+∞) → [0,+∞) such that for all
i, j, i )= j

|µi,j(t, ā, S)− µi,j(t, a, S)| ≤ K1(|S|)|a− ā|, t ∈ [0, T ],

o S → µ1(·, ·, S) is locally Lipschitz continuous, i.e. there exists an increas-
ing function Kµ : [0,+∞) → [0,+∞) such that, if S, S̄ ∈ Rn,|S|, |S̄| ≤
ρ, then

|µ(t, a, S)− µ(t, a, S̄)| =≤ Kµ(ρ)|S − S̄|, a.e a ∈ [0, a†], t ∈ [0, T ],

o there exists an increasing function µ∗ : [0,+∞) → [0,+∞)

|µ(1)(t, a, S)| ≤ µ∗(|S|), a.e a ∈ [0, a†], t ∈ [0, T ],

(H4) for all ρ > 0, given S ∈ Rn, |S| ≤ ρ and a.e. a ∈ [0, a†), t ∈ [0, T ]

−µ(1)
i (t, a, S) +

∑d
j=1,j %=i |µij(t, a, S)| ≤ µ(0)

i (a), i = 1, ...d,

µij(t, a, S) ≤ 0, i, j = 1, ..., d, i )= j;

(H5) the initial function p0 belongs to X+.

Even if our aim is to study the model (1)-(2)-(3), it is useful to reformulate it in a
more general form, which is applicable to several population problems, as in [27]. This
allow us to use a compact notation and to better compare the results with those already
developed in the literature.
By introducing the mapping G : [0, T ]×X → L1

loc (aging function)

G(t,ϕ)(a) = −µ(t, a,Sϕ)ϕ(a), t ∈ [0, T ], a.e. a ∈ (0, a†) (11)

and the mapping F : [0, T ]×X → Rd (birth function)

F(t,ϕ) =

∫ a†

0
β(t, aSϕ)ϕ(a)da, (12)

where S : X → Rn

Sϕ =

∫ a†

0
γ(a)ϕ(a)da, (13)

we can reformulate (1)-(2)-(3)-(9) as follows: find a nonnegative (strong) solution p ∈
CT , satisfying the initial condition (9) and

Dp(t, a) = G(t, p(t, ·))(a), t ∈ (0, T ), a.e. a ∈ (0, a†), (14)
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p(t, 0) = b(t), t ∈ [0, T ], (15)

supplemented by the condition

b(t) = F(t, p(t, ·)), t ∈ [0, T ], (16)

where D is the differential operator

Dp(t, a) =: lim
h→0

p(t+ h, a+ h)− p(t, a)

h
.

Remark 1 Observe that the aging and the birth functions in the general model studied
in [27] don’t depend on t and so the effect of stagionality is not included. Moreover
here we consider the case in which the aging function is separable in a linear part, i.e.

L(ϕ)(a) = −µ(0)(a)ϕ(a), (17)

which unbounded and in a nonlinear one, i.e.

N (t,ϕ)(a) = −µ(1)(t, a,Sϕ)ϕ(a). (18)

Remark 2 In the case d = 1, the assumptions (H1)—(H5) reduce to those considered
in the book [17], where the author studies separable models with external mortality
depending only on the sizes.

Remark 3 Observe that the assumptions (H1)-(H2) ensure that the birth function (12)
is continuous with respect to t and lipschitz continuous with respect to ϕ on bounded
sets of X uniformly with respect to t ∈ [0, T ]. Specifically, we have that there exists a
positive increasing function KF (ρ) > 0 such that for all ρ > 0 if ϕ, ϕ̄ ∈ X , |ϕ|, |ϕ̄| ≤
ρ, then

|F(t,ϕ)− F(t, ϕ̄)| ≤ KF (ρ)||ϕ− ϕ̄||X , t ∈ [0, T ]. (19)

Moreover we can also easily obtain the following property

F(t,ϕ) ∈ Rd
+, t ∈ [0, T ], ϕ ∈ X+, (20)

which is relevant for finding positive solutions.

Remark 4 Observe that the assumptions (H1)-(H3) ensure that the aging function (11)
is continuous with respect to t and that the non linear part (18) is lipschitz continuous
with respect to ϕ on bounded sets of X uniformly with respect to t ∈ [0, T ].

In order to prove the well-posedness of the problem (14)-(15)-(16)-(9) with birth
and aging functions given by (12) and (11) respectively, we will use the method of
characteristics with a fixed point argument. This is a standard approach (see [9], [27],
[17]).

Define, for fixed t, a > 0, c := a− t. For −T < c < a†, by (14) we obtain that the
cohort function

Pc(s) := p(s, s+ c), tc := max{0,−c} ≤ s ≤ Tc = max{T, a† − c},

satisfies
d

ds
Pc(s) = G(s, p(s, ·))(s+ c), a.e. s ∈ [tc, Tc). (21)

5



For the aging function G having the form (11), we can define for −T < c < a†, q ∈ CT ,
the family of matrices

M(s; c, q) := −µ(s, s+ c,Sq(s, ·)), a.e. s ∈ [tc, Tc). (22)

If, for −T < c < a† and q ∈ CT , we can define the family of evolution operators
{U(s,σ; c, q) ∈ Rd×d| tc ≤ σ ≤ s ≤ Tc} associated with

d

ds
u(s) = M(s; c, q)u(t), a.e.s ∈ [σ, Tc), u(σ) = x (23)

i.e. u(s) = U(s,σ; c, q)x, x ∈ Rd, then the solution of (14)-(15)-(16)-(9) is given by

p(t, a) =

{
U(t, t− a; a− t, p)b(t− a; p), a.e. a ∈ (0, t)
U(t, 0; a− t, p)p0(a− t), a.e. a ∈ (t, a†)

.

where, for a given q ∈ CT , b(t; q) denotes the solution of the the renewal equation

v(t) =
∫ t
0 β(t, a,Sq(t, ·))U(t, t− a; a− t, q)v(t− a)da+

∫ a†
t β(t, a,Sq(t, ·))U(t, 0; a− t, q)p0(t− a)da, t ∈ [0, T ].

(24)

We give now some results on the solutions either of (23) or (24).
In the scalar case, the evolution operator associated with (23) is

U(s,σ; c, q) = e
∫ s
σ M(t;c,q)dt, tc ≤ σ ≤ s ≤ Tc,

in the general case we have

Lemma 5 Let T > 0. Under the assumptions (H1), (H3)-H(4) given −T < c < a†
and q ∈ CT , the family of evolution operators {U(s,σ; c, q) ∈ Rd×d| tc ≤ σ ≤ s ≤
Tc} is well defined and for tc ≤ σ ≤ s < Tc the following properties hold

(i) ∂
∂sU(s,σ; c, q) = M(s; c, q)U(s,σ; c, q);

(ii) ∂
∂σU(s,σ; c, q) = −U(s,σ; c, q)M(s; c, q);

(iii) |U(s,σ; c, q)| ≤ 1;

(iv) U(s,σ; c, q)x ≥ 0, for x ≥ 0.

Proof. By introducing the matrices R(s,σ) = diag(exp
∫ s
σ Mii(t;c;q)tdt), σ ≤ s <

Tc, and M̃ = M − diag(Mii), we can represent the solution of (23) as u(s) =
R(s,σ)w(s), where w satisfies

R(t,σ)
d

dt
w(t) = M̃(t; c, q)(t)R(t,σ)w(t), t ∈ [σ, s], w(σ) = x. (25)

The function t → R(t,σ)−1M̃(t; c, q)R(t,σ) is continuous and there exists a unique
continuous solution of (25) on the interval [σ, s] which is differentiable almost every-
where on (σ, s). Thus the evolution operator U(s,σ; c, q) is well-defined and (i)-(ii) are
true. By virtue of (H4) we have that logarithmic norm of the matrix M is nonnegative
and (iii) follows. Moreover the solution is positive by standard results (see [15]).
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Remark 6 Observe that we can assume U(Tc,σ; c, q) = 0 extending the definition of
the evolution operator.

Remark 7 Observe that in the scalar case or in the case that all the species of the
population have the same intrinsic mortality, i.e. µ(0)

i (a) = µ(0)(a), as in the epi-
demiology models, we have that

R(t,σ) = exp−
∫ s
σ µ(0)(t+c)dt)diag(exp−

∫ s
σ µ(1)

i (t,t+c,Sq(t,·))dt),

and the component exp−
∫ s
σ µ(0)(t+c)dt can be simplified in (??).

Lemma 8 Let T > 0. Under the assumptions (H1),(H3)-H(4) for −T < c < a† and
q ∈ CT , the family of evolution operators {U(s,σ; c, q) ∈ Rd×d| tc ≤ σ ≤ s ≤ Tc}
satisfies for all q, q̃ ∈ CT , ||q||T , ||q̃||T ≤ ρ

|U(s,σ; c, q)− U(s,σ; c, q̃)| ≤ ||q − q̃||TK1(γ
+ρ)γ+T.

Proof. The property follow from lemma 5 and the fact

∂

∂τ
U(s, τ ; c, q)U(τ,σ; c, q̃) = −U(s, τ ; c, q)[M(τ ; c, q)−M(τ ; c, q̃))U(τ,σ; c, q̃);

which by integration implies the thesis.

Lemma 9 Let T > 0. Under the assumptions (H1)–H(5) and for all q ∈ CT , the
renewal equation (24) has a unique continuous solution b(t; q), t ∈ [0, T ]. Moreover

|b(t; q)| ≤ β∗eβ
∗t||p0||X , t ∈ [0, T ],

and there exists an increasing function Kb : [0,+∞) → [0,+∞) such that for all
q, q̃ ∈ CT , ||q||T , ||q̃||T ≤ ρ, we have

|b(t; q)− b(t; q̃)| ≤ Kb(ρ)||p0||X ||q − q̃||T .

Proof. The results follow by a suitable generalization of the standard approach pre-
sented in [17]. See the thesis (??) for details.

Theorem 10 Let T > 0. Under the hypothesis (H1)–(H5), we have that the initial
condition (9) uniquely fixes a nonnegative solution p ∈ CT of (14), (15), and (16).
Moreover

||p(t, ·)||X ≤ eβ∗t||p0||X , t ∈ [0, T ],

||p(t, ·)− p̃(t, ·)||X ≤ e$(T )t||p0 − p̃0||X , t ∈ [0, T ].

Proof. Define, for fixed T > 0 and ρ > 0, the set

K = {q ∈ CT |q(t, a) ≥ 0 a.e. a ∈ [0, a†), t ∈ [0, T ] ||q||T ≤ ρ}

which is a closed set in CT , and the map Q : K ⊂ CT → CT given by

Qq(t, a) =

{
U(t, t− a; a− t, q(t, ·))b(t− a; q), a.e. a ∈ (0, t)
U(t, 0; a− t, q(t, ·))p0(a− t), a.e. a ∈ (t, a†)

. (26)
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where b(t; q) is the solution of the renewal equation (24) and p0 satisfies (H7). We can
prove that there exists ρ >e β∗T ||p0||X such that Q maps K into itself and QN is a
contraction on K for N sufficiently large. Thus there exists an unique positive solution
p ∈ CT .

We conclude this section with some age-dependent models found in the literature,
that can be represented in the general form(1)-(2)-(3).

Example 11 In [17] the competition among juveniles and adults in a single popula-
tion, i.e. d = 1, has been described by the Gurtin-MacCamy model





∂p
∂t (t, a) +

∂p
∂a (t, a) + (µ0(a) + µ1(a, J(t), A(t)))p(t, a) = 0, a ∈ [0, a†], t ≥ 0,

p(t, 0) =
∫ a†
0 β(a, J(t), A(t))p(t, a)da, t ≥ 0,

p(0, a) = p0(a), a ∈ [0, a†].

(27)
where

S(t) = (J(t), A(t))T

where
J(t) =

∫ a∗

0
p(t, a)da, A(t) =

∫ a†

a∗
p(t, a)da, t ≥ 0

and a∗ is the maturation age.

Example 12 (see [17]). Let d = 2. In [17] the author considers an age-structured SI
epidemic model described by





∂p1

∂t (t, a) +
∂p1

∂a (t, a) + (µ(0)(a) + µ(1)(t, a)p1(t, a) = 0,
∂p2

∂t (t, a) +
∂p2

∂a (t, a) + (µ(0)(a) + α)p2(t, a)− µ(1)(t, a)p1(t, a) = 0, a ∈ [0, a†], t ≥ 0,

p1(t, 0) = Φ(S(t))(
∫ a†
0 β(a)p1(t, a)da, p2(t, 0) = 0, t ≥ 0,

p(0, a) = p0(a), a ∈ [0, a†].

(28)
where

S(t) =

∫ a†

0
γ(a)(p1(t, a) + p2(t, a))da, t ≥ 0. (29)

Example 13 In [1] the author propose the following models for a single population





∂p
∂t (t, a) +

∂p
∂a (t, a) + (µ(0)(a) + µ(1)(t, a, S1(t)))p(t, a) = 0, a ∈ [0, a†], t ≥ 0,

p(t, 0) =
∫ a†
0 β(t, a, S2(t))p(t, a)da, t ≥ 0,

p(0, a) = p0(a), a ∈ [0, a†].

(30)

2.1 Regular solutions
In the previous section we have seen that the solution exhibits a ”smoothing effect”
on the initial age distribution. Although the initial age distribution may be only inte-
grable, the solution p(t, a) regarded as a function of age a for a fixed time t is not only
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integrable on [0, a†] but continuous on [0, t]. Since our aim is to consider numerical
methods and in particular to test higher order numerical schemes to simulate the long-
time behavior of the solutions, we now investigate regularity of the solutions. For all
T > 0 and for some integer k ≥ 0 we assume that

(A1) all the elements of the nonnegative matrix γ(a) belong to Ck([0, a†];R) and have
compact support;

(A2) all the elements of the nonnegative fertility matrix β(t, a, S) belong to Ck+1([0, T ]×
[0, a†]×Rn;R) with derivative with respect to S in Ck([0, T ]× [0, a†]×Rn;R)
and bounded for S bounded. Moreover there exists an increasing function β∗ :
[0,+∞) → [0,+∞) such that

|β(t, a, S)| ≤ β∗(|S|), a ∈ [0, a†], t ∈ [0, T ], S ∈ Rn;

(A3) the mortality matrix µ(t, a, S) is such that

o (4) holds and thus it an be represented as the sum of the internal mortality
diagonal matrix µ(0) and the external mortality matrix µ(1) as in (7);

o the functions µ(0)
i ∈ Ck+1([0, a†);R), i = 1, ..., d, are nonnegative and

moreover (10) holds;
o all the elements of the external mortality matrix µ(1)(t, a, S) belong to
Ck+1([0, T ]×[0, a†]×Rn;R) with derivative with respect to S in Ck([0, T ]×
[0, a†]× Rn;R) and bounded for S bounded;

(A4) for all ρ > 0, given S ∈ Rn, |S| ≤ ρ and a ∈ [0, a†), t ∈ [0, T ]

−µ(1)
i (t, a, S) +

∑d
j=1,j %=i |µij(t, a, S)| ≤ µ(0)

i (a), i = 1, ...d,

µij(t, a, S) ≤ 0, i, j = 1, ..., d, i )= j;

(A5) the initial function p0 belongs to Ck([0, a†];Rd), it is nonnegative and it has
compact support.

Theorem 14 Let T > 0. Under the assumptions (A1)–(A5) and the compatibility
condition

p0(0) =

∫ a†

0
β(a, t, S0)p0(a)da, S0 =

∫ a†

0
γ(a)p0(a)da, (31)

we have that the initial condition (9) uniquely fixes a nonnegative solution p ∈ C0([0, T ]×
[0, a†];Rd) ∩ Ck+1([0, T ]× [0, a†]− {(t, a)|a = t};Rd) of (1), (2), and (3).

Remark 15 To ensure that the solution p belongs to Ck([0, T ]×[0, a†];Rd), for k ≥ 1,
by (15) we have to assume 31 and the further compatibility conditions on p($)0 (0) =
b($)(0) for ) = 1, ..., k.

Remark 16 Observe that in (A5), we can assume

lim
a→a†

e
∫ a†
0 µ(0)(a)dap0(a) < +∞

instead of the compact support condition.
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3 Numerical methods
One of the features of the model (1) is that the mortality rate is separable in linear
and nonlinear parts. Moreover, the linear part is diagonal and it is assumed to became
unbounded as a → a† to take into account finite a†. This condition causes problems in
the numerical integration, as pointed out by several authors (see [18], [21], [1]).

By applying the method of characteristic (MOC) or the method of lines (MOL)
to the model (1), we get a system of differential-algebraic equations (DAEs) where the
right-hand side of the differential equations consists of a linear part and a nonlin ear stiff
part and the algebraic equations arise by the discretization of the new-born equations
(3). Having long-time integration in mind, in section 3.1 we focus our attention on
the MOL and on the efficient numerical integration of the resulting DAEs. The use of
an implicit method allows to integrate efficiently the stiff part due to the unbounded
mortality function.

Another possible line of investigation concerns the treatment of the linear and non-
linear part of the differential equations resulting by either MOL or MOC. In the litera-
ture different numerical approach have been analyzed: integrating factor (IF) methods,
splitting methods, IMEX methods, Sliders, Exponential Time Dierencing methods (see
[26] and the references therein). The idea of the IF method is to make a change of
variable that allows us to solve for the linear part exactly, and then use a numerical
scheme to solve the transformed, nonlinear equation. In section 3.1 we test the IF on
the differential system arising by MOL (MOL-IF). The comparison between the vari-
ous approach will be considered in the future.

Techniques that multiply the differential equations by an integrating factor and
make a change of variable in order to efficiently solve the linear part and then choose a
numerical scheme to integrate the transformed non linear equations has been used not
only for ordinary differential equations (ODEs) but also for partial differential equa-
tions (PDEs) (see again [26] and the references therein). Thus in section 3.2 we pro-
pose the integrating factor (IF) approach for 1). We approximate again the modified
model by MOL and we call the resulting approach IF-MOL. The IF approach requires
the efficient computation of the survival probability, which is treated in section 3.2.1.

We assume here that the functions are sufficiently smooth to ensure that the solution
is regular according the results given in theorem 14. To test the numerical methods we
consider (1) in [0, T ] where

• Example 17 One population d = 1 (see [18])

- µ0(a) = − λ
a†−a , ∀a ∈ [0, a†], λ ∈ R

- µ1(t, a, S) = S + 1, ∀a ∈ [0, a†], ∀t ∈ [0, T ], ∀S ∈ R;

- β(t, a, S) = 5, ∀a ∈ [0, a†], ∀t ∈ [0, T ] ∀S ∈ R;

- γ(a) = 1, ∀a ∈ [a, a†];

- p0(a) = e−5a + e−5

4 , a ∈ [0, a∗], a∗ < a†.

• Example 18 Two species d = 2

- µ0(a) =

(
λ

a†−a 0

0 λ
a†−a

)

- µ1(a, t, S) =

(
S2 0
−S2 3

)
S = (S1, S2)T

10



- β(a, t, S) = R0φ(S1)

(
1 1
0 0

)
S = (S1, S2)T , R0 = 6 and φ(S1) =

6 ∗max
{
1− S1

4 , 0
}
.

- γ(a) =

(
1 1
1 0

)

- p0(t, a) =

(
e−5a + e−5

4 , a ∈ [0, a∗], a∗ < a†
a(a† − a) a ∈ [0, a†]

)

3.1 Direct approach: the method of lines
As first step we propose to integrate the resulting DAEs by DAE-solvers and we test
them on our test problems 17 e 18. Let us restrict our attention to MOL and Consider
a0 = 0 < a1 < .... < aM = a†. By defining the functions

Pm(t) = P (t, am),m = 0, ...,M,

we can construct an approximation as follows

p(t, a) ≈
M−1∑

m=0

)m(a)Pm(t), a ∈ [0, a†], t ∈ [0, T ], (32)

where )m(t),m = 0, ...,M are the Langrange polynomials relevant to the nodes am
and PM (t) = 0. By choosing the quadrature rule with nodes am and weights wm =∫ a†
0 )m(a)da, we get the following DAEs





P ′
m(t) +

∑M−1
k=0 )′k(am)Pk(t) + (µ0(am) + µ1(t, am, Sm(t))Pm(t) = 0,

m = 1, ...,M − 1

P0(t) =
∑M−1

m=0 wmβ(t, am, Sm(t))Pm(t),

(33)

where Sm(t) =
∑M−1

m=0 wmγ(am)Pm(t) and the initial condition is given by

Pm(0) = p0(am),m = 0, ...,M − 1. (34)

Here we choose am,m = 0, ...,M as the Chebyshev extremal nodes and we propose to
integrate in time (33)-(34) by numerical methods for index one DAEs (see [14]). The
regularity of the solution and thus the order of accuracy depends on the compatibily
condition (31). Therefore this approach is convenient when T > a† and for the nu-
merical simulation of long-time behaviour, as it has been confirmed by the numerical
results.

Example 19 We consider the problem (17) with a† = 1 and λ = 1. To test the per-
formance of the MOL varing M , we integrate the resulting DAEs (33) in [0, T ] by
MATLAB code ode15s with RelTol = AbsTol = TOL where TOL = 10 ∗ eps,
where eps = 2−52. The errors are estimated with respect to the values p̃(a†, 0) =
11.94931346314318 ≈ p(a†, 0) and p̃(2a†, 0) = 13.25859019167530 ≈ p(2a†, 0),
which are obtained with M = 50 and TOL = 10 ∗ eps. This allows us to have an idea
of the accuracy of the method, but in the future we will add a more complete analysis.
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M steps in [0, T ] p(T, 0) absERR relERR
10 1602 11.94960428263432 2.9082e− 04 2.4338e− 05
20 3047 11.94938478880748 7.1326e− 05 5.9690e− 06
40 5793 11.94932148078744 8.0176e− 06 6.7097e− 07

Table 1: Numerical results for (17) on [0, T ], with T = a† = 1s and TOL = 10 ∗ eps.

M steps in [0, T ] p(T, 0) absERR relERR
10 2001 13.25861519778685 2.5006e− 05 1.8860e− 06
20 3706 13.25859610672555 5.9151e− 06 4.4613e− 07
40 6925 13.25859086340420 6.7173e− 07 5.0664e− 08

Table 2: Numerical results for (17) on [0, T ], with T = 2a† and TOL = 10 ∗ eps

By comparing the number of steps in tables 1-2, it is clear that the bigger compu-
tational effort is devoted to the integration in the interval [0, T ], where the solution is
less accurate. In table 3 we integrate the equations for t ∈ [T, 2T ], T = a†, by choos-
ing as initial solution p0(T, a) the polynomial interpolating the computed values with
M = 50. The number of steps has been reduced and the accuracy has been improved,
confirming that the MOL with Chebyshev nodes could be use for long time simulations.

M steps in [T, 2T ] p(0, 2a†) absERR relERR
10 479 13.25859130588390 1.1142e− 06 8.4037e− 08
20 706 13.25859025243245 6.0757e− 08 4.5825e− 09
40 1180 13.25859019099947 6.7576e− 10 5.0968e− 11

Table 3: Numerical results for (17) on [T, 2T ] with T = a† and TOL = 10 ∗ eps

By relaxing the tolerance TOL, we obtain the results in tables 4- 5, which confirm
the good performance of the DAE solver.

Example 20 We consider the model 18 with a† = 1 and λ = 1. The resulting DAEs
(33) is solved in [0, T ] by the Matlab code ode15s with TOL = 10∗eps and we estimate
the errors with respect to the values p̃1(0, a†) = 5.262131770424491 ≈ p1(0, a†) and
p̃1(2a†, 0) = 5.328917335996803 ≈ p1(2a†, 0) respectively, which are obtained with
M = 50 and TOL = 10 ∗ eps. We have that p̃2(0, a†) = 0 and p̃1(2a†, 0) = 0 ≈
p2(2a†, 0).

The comparison of the number of steps in tables 6-7 confirms again that the ap-
proach is convenient for the long-time simulations. In tables 8-9 we study as the cost
reduces with TOL = 10−6.

3.1.1 MOL-IF aproach

The right-hand side of the differential equations in (33) consists of a non linear part
due to the mortality matrix µ1 and of a linear part due to either the differentiation
matrix DM := ()′k(am))mk,m, k = 0, ....,M − 1 and the intrinsic mortality matrix

12



M steps p(T, 0) absERR relERR
20 150 11.94938473364693 7.1270e− 05 5.9644e− 06
40 287 11.94932144698652 7.9838e− 06 6.6814e− 07

Table 4: Numerical results for (17) on [0, T ], with T = a† and TOL = 10−6

N steps in [0, T ] valore p(T, 0) ERRabs ERRrel
20 178 13.25857386774502 1.6324e− 05 1.2312e− 06
40 341 13.25858809892424 2.0927e− 06 1.5784e− 07

Table 5: Numerical results for (17) on [0, T ], with T = 2a† and TOL = 10−6

M0 = diag(µ0(am)). By defining P(t) := (P1(t), ..., PM−1(t))T , the differential
equations in (33) can be rewritten as

P′(t) = −M0P(t) +N(t,P(t)), (35)

where

N(t,P) = −diag(µ1(t, am,
∑M−1

m=0 wmγ(am)Pm)P−DMP, (36)

Multiplying both sides of (35) by the integrating factor

eM0t

and, by defining
U(t) = eM0tP(t),

we get
U′(t) = eM0tN(t, e−M0tU(t)) (37)

Observe by this choice the integrating factor is a diagonal matrix, so that scalars rather
than matrices are involved.

3.2 Reformulation of the model and the IF approach
The idea is to make a change of variable that allows us to solve the linear part exactly or
with a proper algorithm, and then concentrate the effort in the approximation to solve
the transformed nonlin ear equation. This technique has been used for PDEs (see [26]
and the references therein). When it is applied to ODEs is called Integrating Factor
(IF) approach and we use the same acronym for the method applied to our model. Let
us define

u = π−1p

where π(t, a), called the integrating factor, is the solution of the matrix equation

∂π
∂t (t, a) +

∂π
∂a (t, a) + µ0(a)π(t, a) = 0, a ∈ [0, a†], t ≥ 0,

π(t, 0) = Id, t ≥ 0,

π(0, a) = Id, a ∈ [0, a†),

(38)
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M steps in [0, T ] p1(T, 0) absERR relERR
10 2230 5.261790545481460 3.4122e− 04 6.4845e− 05
20 4084 5.262092072498592 3.9698e− 05 7.5441e− 06
40 7414 5.262132031697793 2.6127e− 07 4.9652e− 08

Table 6: Numerical results for (18) on [0, T ], with T = a† and TOL = 10 ∗ eps.

M steps in [0, T ] p1(T, 0) absERR relERR
10 3081 5.328915278902983 2.0571e− 06 3.8602e− 07
20 5455 5.328917326261293 9.7355e− 09 1.8269e− 09
40 9672 5.328917356690360 2.0694e− 08 3.8833e− 09

Table 7: Numerical results for (18) on [0, T ] with T = 2a† and TOL = 10 ∗ eps.

with Id the identity matrix. By defining the exponential matrix

π(a) = e−
∫ a
0 µ0(s)ds, a ∈ [0, a†], (39)

we get

π(t, a) =

{
π−1(a− t)π(a), a ≥ t,
π(a), a ≤ t.

(40)

Remark 21 Since µ0 is assumed to be a diagonal matrix, the problem (38) reduces to
the solution of the d-scalar equations

{
π′
i(a) = −µ0,i(a)πi(a), a ∈ [0, a†], i = 1, ..., d

πi(0) = 1,
(41)

that, in some cases, can be done exactly. Moreover observe that our assumptions on
the internal mortality matrix, ensure that πi(a†) = e−

∫ a†
0 µi(s)ds = 0, i = 1, ..., d and

πi(a†, t) = 0, t ≥ a†.

The equations to solve to find u are given by

∂u
∂t (t, a) +

∂u
∂a (t, a) + µ̄(t, a, S̄(t))u(t, a) = 0, a ∈ [0, a†), t ≥ 0,

u(t, 0) =
∫ a†
0 β̄(a, t, S̄(t))u(t, a)da, t ≥ 0,

u(0, a) = p0(a), a ∈ [0, a†],

S̄(t) =
∫ a†
0 γ̄(t, a)u(t, a)da, t ≥ 0.

(42)

where
µ̄(a, t, S) = π−1(t, a)µ1(a, t, S)π(t, a)
β̄(a, t, S) = β(a, t, S)π(t, a)
γ̄(t, a) = γ(a)π(t, a).

(43)

This reformulation allows also to obtain existence, uniqueness and regularity re-
sults. It is important to observe that µ̄ii(a, t, S) = (µ1)ii(a, t, S), i = 1, ...d while
(µ1)ij(a, t, S) is the solution of πi(t, a)µ̄ij(a, t, S) = (µ1)ij(a, t, S)πj(t, a), i, j =
1, ...d, i )= j. In general such equations are not well defined when t ≥ a†, a = a†.
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M steps in [0, T ] p1(T, 0) absERR relERR
20 191 5.262091744435034 4.0026e− 05 7.6064e− 06
40 335 5.262131865607987 9.5183e− 08 1.8088e− 08

Table 8: Numerical results for (18) on [0, T ] with T = a† and TOL = 10−6

M steps in [0, T ] p1(T, 0) absERR relERR
20 259 5.328917235325827 1.0067e− 07 1.8891e− 08
40 458 5.328917624916919 2.8892e− 07 5.4217e− 08

Table 9: Numerical results for (18) on [0, T ] with T = 2a† and TOL = 10−6

But in the scalar case, i.e. d = 1, or when the matrices µ1 and π commutes, we
have

µ̄(a, t, S)) = µ(a, t, S). (44)

In epidemic model (see the S-I model in (28)) where pi represents a class of the same
population and thus the intrinsic mortality rates are equal, we obtain that µ̄(a, t, S)) =
µ(a, t, S). For instance for the S-I model (28) we have that

µ̄(t, a) =

(
−λ(t, a) 0

−λ(t, a)eαa 0

)
. (45)

In the general case, since the survival probability of the single species goes to zero, we
can solve the problem in the interval [0, ā] with ā < a† defined by survival probability
greater than a fixed threshold. Further comments can be found in section ??. In that
follows, we assume that the matrix µ̄ is well defined and bounded.

To solve numerically (42) we need an ODE solver for the survival probability π in
(39), a PDE solver for hyperbolic equations together a quadrature rule to approximate
the size and the boundary conditions. The literature is wide (see ...). Here we focus the
attention on RK-methods to approximate the survival probability and on the method of
line (MOL) based on Chebyshev nodes to solve (42) for long time simulations.

Dire che lavorereremo con eta’ massima minore o uaguale di a che diversi approcci
saranno nalizzatiscelta.

3.2.1 Approximation of the survival probability

As observed in remark 21, the integrating factor can be obtained solving d scalar or-
dinary differential equations 41 and efficient numerical methods are necessary. Here
we propose the s-stage Runge-Kutta methods of Radau IIA type, which have order
p = 2s − 1, are AN-stable and provide a continuos approximation of the solutions of
uniform order q = s + 1 (see [14]). In the following tables, we present the numerical
results obtained on the test problem

y′(a) = − λ

1− a
y(a), a ∈ [0, ā], (46)

where ā < a† = 1 and λ ∈ R is a parameter. In such case the solution of (46) can be
obtained exactly

y(a) = (1− a)λ. (47)

The equation (46) was introduced in [18], where the authors show that the effective
rate of convergence is the theoretical one for Eulers method and for Crank-Nicolson,
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whenever λ is at least as large as the theoretical asymptotic order of convergence.
When the value of λ is smaller than that rate, then the effective rate of convergence is
actually given by λ. This means that the method degenerates” and it does not converge
any longer at its theoretical rate. Here we prove that by choosing in a clever way
af < 1, we could preserve the convergence order with constant stepsize for s = 2, 3
and by using RADAU5 with step size control [14] we can obtain the machine precision
accuracy for different value of λ, i.e. λ = 0.5, 1.5

h s err s err
0.1 2 6.4186e-04 3 1.6929 e-05

0.05 9.5154e-05 7.8726 e-07
0.025 1.2585e-05 2.8454 e-08
0.01 8.1983e-07 3.0582 e-10
0.005 1.0275e-07 9.6267e-12

0.0025 1.2582 e-08 3.072 e-13
0.001 8.2266 e-10 2.2204 e-15

Table 10: af = 0.9 and λ = 0.5.

3.2.2 IF-MOL method

Consider a0 = 0 < a1 < .... < aM = a† and define the functions Um(t) =
u(am, t),m = 0, ...,M. We consider

u(t, a) ≈
M∑

m=0

)m(a)Um(t), a ∈ [0, a†], t ∈ [0, T ], (48)

where )m,m = 0, ...,M are the Langrange polynomials relevant to the nodes am. By
choosing the quadrature rule with nodes am and weights wm =

∫ a†
0 )m(a)da, we get

from (42) the following differential algebraic equations (DAEs)

U ′
m +

∑M
k=0 )

′
k(am)Uk(t) + m̄(t, am, S̄m(t))Um = 0, m = 1, ...,M

U0(t) =
∑M

m=0 wmβ̄(t, am, S̄m(t))Um(t),
(49)

and
Um(0) = p0(am),m = 0, ...M,
UM (t) = 0

S̄m(t) =
∑M

m=0 wmγ̄(am)Um(t).

(50)

The regularity of the solution and thus the order of accuracy a depends on the splic-
ing conditions. Therefore this approach is more convenient for t > a† and for long time
behaviour. Concerning the integration in time of (49)-(50) we use numerical methods
suitable forindex one DAEs (see Hairer, MatlabCode). In the following example we
present the numerical results for (17). To sake of brevity, we omit the results obtained
on (18) since they are analogous of the following ones.

Example 22 We consider the problem (17) with a† = 1 and λ = 1. To test the per-
formance of the IF-MOL varing M , we integrate the resulting DAEs (49) in [0, T ] by
MATLAB code ode15s with RelTol = AbsTol = TOL where TOL = 10∗eps. More-
over we consider the exact integrating factor represantation.The errors are estimated
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M steps in [0, T ] p(T, 0) absERR relERR
10 3634 11.94942319390904 1.0973e− 04 9.1830e− 06
20 6822 11.94931782260240 4.3596e− 06 3.6483e− 07
40 12735 11.94930116680950 1.2296e− 05 1.0290e− 06

Table 11: Numerical results for (17) on [0, T ], with T = a† = 1s and TOL = 10∗eps.

M steps in [0, T ] p(T, 0) absERR relERR
10 4338 13.25859811502223 7.9233e− 06 5.9760e− 07
20 7946 13.25859015271002 3.8965e− 08 2.9389e− 09
40 14612 13.258590148882 4.2793e− 08 3.2276e− 09

Table 12: Numerical results for (17) on [0, T ], with T = 2a† and TOL = 10 ∗ eps

with respect to the values in ().

The results in tables 14, 15 and 13 suggest the same comments in Example 22. In
particular the number of steps confirm that the bigger computational effort is devoted
to the integration in the first interval where the solution is less accurate and that the
approach is good for long time simulations. But with respect to the direct approach, the
IF-MOL one requires more steps and so costs more, also for TOL = 10−6 in tables
14- 15. Concerning the accuracy, the results seem better in the direct one, but a more
accurate analysis is necessary to support any conclusions. Nevertheless we recall that
in general the error in IF-MOL approach depends also to the error in the integrating
factor approximation.

M steps in [T, 2T ] p(0, 2a†) absERR relERR
10 766 13.25859185943840 1.6678e− 06 1.2579e− 07
20 1088 13.25858937982010 8.1186e− 07 6.1232e− 08
40 1998 13.2585890274612 1.1642e− 06 8.7808e− 08

Table 13: Numerical results for (17) on [T, 2T ] with T = a† and TOL = 10 ∗ eps

4 Conclusion
In the paper we proposed a nonlinear model to describe the dynamics of more pop-
ulations or interacting species of the same population, which generalizes the Gurtin-
MacCamy one. We gave results on the existence, the uniqueness and the regularity
of the solutions. In the second part we considered a numerical approach, which is
based on the discretization of the the age part by the method of lines on the Chebyshev
points and on the integration of the resulting DAEs by a suitable solver. The idea is to
have a high-order approximations of the solutions, which is a desirable feature for long
time simulations. The numerical results on the test problems gave a first insight on
the performances and allowed to conclude that MOL direct approach is better than the
MOL-IF one. We also proposed an implicit numerical method to integrate efficiently
the survival probability.
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M steps p(T, 0) absERR relERR
20 391 11.94931815219286 4.6890e− 06 3.92416e− 07
40 622 11.94930128784704 1.217e− 05 1.0189e− 06

Table 14: Numerical results for (17) on [0, T ], with T = a† and TOL = 10−6

N steps in [0, T ] valore p(T, 0) ERRabs ERRrel
20 450 13.25858826247615 1.9292e− 06 1.4550e− 07
40 730 13.25858846734374 1.7243e− 06 1.3005e− 07

Table 15: Numerical results for (17) on [0, T ], with T = 2a† and TOL = 10−6

Moreover we obtained some suggestions for future lines of investigations. We will
consider

• the improvement of the accuracy when 0 ≤ t ≤ a†;

• the development of a specific DAE solver which takes into account the linear and
nonlinear parts;

• the error analysis of the method;

• the evaluation the the method’s efficiency and accuracy by means of more test
problems.
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